

Incorporating Intra-Spectral Dependencies With A Recurrent Output Layer For Improved Speech Enhancement

Khandokar Md. Nayem and Donald S. Williamson Department of Computer Science, Indiana University, USA

Speech Enhancement

- Effectively remove background noise.
- Improve the quality and intelligibility of speech.
- Incorporate spectral-level dependencies within a single time frame.

Proposed Intra-Spectral Output Layers

Intra-Spectral Recurrent (ISR) layer:

 $\Delta = \sigma(R^L a_t^{L-1} + \beta^L)$ $\psi_{1,t} = \Delta_1 + \sigma_{\psi}(w_{1,1} \times \psi_{1,t-1})$ $\psi_{k,t} = \Delta_k + \sigma_{\psi}(w_{k,k-1} \times \psi_{k-1,t})$, where $k \in [2, n^L]$

Intra-Spectral Bi-directional Recurrent (ISBR) layer:

mage source, https://clipground.com/image-post/83621-black-people-restaurant-clipart-19.jpg.html#overlayGallery_post_83621_black-people-restaurant-clipart-19.jp

Speech Enhancement

Noisv speech

Clean speech

Motivation

Related Work:

- Speech has spectral dependencies along the frequency axis [1].
- Current approaches use dedicated long-short term memory (LSTM) recurrent neural network (RNN) modules to learn spectral dependencies, at the sub-band frequency level or overall time [2, 3].
- Current approaches do not consider local spectral dependencies at adjacent or nearby frequencies over short-time instances.

Proposed Work:

- Develop a recurrent layer that captures frequency dependencies within each time frame.
- Capture temporal dependencies with an LSTM RNN.
- Conduct experiments to determine system robustness.

Notation

In the time domain,

 $m_t = s_t + n_t ;$ where $m_t \to$ noisy speech, $s_t \to$ clean speech, $n_t \to$ noise, $t \to$ time index

In the time-frequency (T-F) domain,

 $M_{t,k} = \left| M_{t,k} \right| e^{i\theta_{M_{t,k}}};$ where $M_{t,k} \to \text{STFT}$ of noisy speech, $|M_{t,k}| \to \text{magnitude response}, \theta_{M_{t,k}} \to \text{phase response}, k \to frequency index}$

- Each neuron in the output layer corresponds to a frequency bin.
- Incorporate a first-order Markov assumption to learn spectral dependencies across frequencies (ISR, ISBR).
- A traditional LSTM network is first pre-trained, then a ISR/ISBR output layer replaces the original output layer.
- LSTM network learns the temporal dependencies and ISR/ISBR learns spectral dependencies.

Experiments and Results

- IEEE speech corpus consists of 720 utterances.
- Noise types: speech-shaped noise (SSN), cafeteria, factory, and babble.
- Trained in 3 SNR levels (-3, 0, 3 dB), tested in additional 2 SNR levels (-6 and 6 dB).
- Total training signals ~50 hrs, total validation signals ~11 hrs, total testing signals ~18.3 hrs.

• Estimation of the clean speech $\hat{S}_{t,k}$ can be predicted by,

 $\left|\hat{S}_{t,k}\right| = \boldsymbol{F}_{\boldsymbol{\phi}}(\left|\boldsymbol{M}_{t,k}\right|)$ $\hat{S}_{t,k} = \left|\hat{S}_{t,k}\right| e^{i\theta_{M_{t,k}}}$

where $|S_{t,k}| \rightarrow$ estimated clean magnitude, $F_{\phi}() \rightarrow$ estimation function with parameters ϕ

Baseline Deep Networks

Baseline DNN architecture for comparison:

- Each time frame of $|M_{t,k}|$ is the input and estimated $|\hat{S}_{t,k}|$ is the output of the network.
- Output of each layer a_t^l is computed by, $a_t^l = \sigma(V^l a_t^{l-1} + z^l)$
- where $l \rightarrow$ layer index, $\sigma \rightarrow$ activation function, V^{l} and z^{l} are weight and bias matrices, respectively.
- Uncorrelated (across time and frequency) outputs.
- Spectral output at each neuron does not depend on spectral outputs from other output-layer neurons.
- ReLU activation function, Adam optimizer, early stopping by

Table: Average scores of the different models for seen SNRs (e.g. -3, 0, and 3 dB). Best results are shown in **bold**.

	PESQ				STOI				SI-SDR			
	SSN	Cafe	Factory	Babble	SSN	Cafe	Factory	Babble	SSN	Cafe	Factory	Babble
Mixture	1.95	1.86	1.83	1.77	0.71	0.62	0.65	0.59	-0.51	-2.06	-0.96	-1.97
DNN [4]	2.04	1.89	2.02	1.89	0.75	0.63	0.72	0.56	-1.75	-1.1	-1.4	-1.39
LSTM	2.12	1.97	2.05	1.95	0.77	0.64	0.76	0.62	-0.96	-1.35	-0.15	-0.44
D-ISR	2.24	2.08	2.26	2.08	0.85	0.76	0.86	0.76	-1.49	-2.91	-2.75	-3.48
L-ISR	2.27	2.21	2.29	2.11	0.82	0.68	0.84	0.72	0.06	-1.34	0.17	-1.3
L-ISBR	2.3	2.24	2.31	2.13	0.88	0.74	0.87	0.73	2.35	-0.12	-0.94	-0.01
L-FT[2]	2.12	2.01	2.07	2.04	0.82	0.74	0.82	0.66	1.04	-1.16	-0.88	-0.1

Conclusion and Future Works

validation set. [3]

No pre-training and fine tuning steps.

Time

DNN structure

Baseline LSTM architecture for the proposed approach:

- Input and output are magnitude of the spectrogram same as baseline DNN.
- Output of each layer a_t^l is computed by,

$$\begin{split} f_t^l &= \sigma_g \Big(W_f^l a_t^{l-1} + U_f^l h_{t-1}^l + b_f^l \Big) \\ i_t^l &= \sigma_g \Big(W_i^l a_t^{l-1} + U_i^l h_{t-1}^l + b_i^l \Big) \\ o_t^l &= \sigma_g \Big(W_o^l a_t^{l-1} + U_o^l h_{t-1}^l + b_o^l \Big) \\ c_t^l &= f_t^l \circ c_{t-1}^l + i_t^l \circ \sigma_c \big(W_c^l a_t^{l-1} + U_c^l h_{t-1}^l + b_c^l \big) \\ h_t^l &= o_t^l \circ \sigma_h (c_t^l) \\ a_t^l &= \sigma_a \Big(W_a^l h_t^l + b_a^l \Big) \quad \text{, where } l \in [1, L] \end{split}$$

- Relationships across time frames are learned.
- Does not learn spectral relationships within the frequency axis.

- Improvements in a variety of noises and SNR values prove that the proposed ISR/ISBR layer along with a base LSTM network successfully captures both temporal and spectral correlations.
- Overall performance of LSTM network with ISR/ISBR layer (L-ISR/L-ISBR) shows the correlation between adjacent frequencies are important in the estimation of clean speech.
- Currently, mixture phase is used with enhanced speech magnitude.
- Phase-level dependencies will be intergraded in the future work.
- Spectral dependencies greater than first-order markov should be explored.

References

[1] T. F. Quatieri, Discrete-time speech signal processing: principles and practice. Upper Saddle River, NJ: Prentice Hall, 1st ed., 2002.

[2] J. Li, A. Mohamed, G. Zweig, and Y. Gong, "LSTM time and frequency recurrence for automatic speech recognition," in Proc. *IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU),* pp. 187–191, 2015.

[3] J. Deng, B. Schuller, F. Eyben, D. Schuller, Z. Zhang, H. Francois, and E. Oh, "Exploiting time-frequency patterns with lstm-rnns for low-bitrate audio restoration," Neural Computing and Applications, pp. 1–13, 2019.

[4] Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, "A regression approach to speech enhancement based on deep neural networks," in Proc. *IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP),* pp 7-19, 2015.