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Motivation
Monaural speech enhancement is a challenging task.

The best performing deep architectures use LSTM recurrent
neural networks (RNNs).

Underutilize or ignore spectral-level dependencies.

A deep learning architecture that leverages both temporal
and spectral dependencies within the magnitude and phase
responses.

Noisy speech

Clean speech

Speech 
Enhancement

Image source, https://clipground.com/
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Related work
Signal approximation
Weninger et al. 2014, Pascual et al. 2017 (Segan)

End-to-end waveform enhancement
Fu et al. 2018 utterance level optimization

Dedicated frequency LSTM modules
Li et al. 2015 in speech recognition, Deng et al. 2019 in audio restoration

Incorporating spectral-level dependencies
Nayem and Williamson 2019 for magnitude
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Proposed approach
We propose an intra-spectral (e.g. across-frequency) recurrent layer as output layer that captures
frequency dependencies within each time frame of a speech signal.

We train a base LSTM network to predict both the spectral-magnitude response and group delay,
where the LSTM model captures temporal correlations.

We introduce Markovian recurrent connections in the output layers to capture spectral dependencies
within the magnitude and phase responses.

IC
A

SS
P 

20
20



Background & Notation
In the time domain, 𝑚! = 𝑠! + 𝑛!

In the time-frequency (T-F) domain, 𝑀!,# = 𝑀!,# 𝑒$%!,#
$

Estimate clean speech, (𝑆!,# = 𝐹&(𝑀!,#) = 𝐹&(|𝑀!,#|, 𝜃!,#' ) ≈ 𝐹&(|𝑆!,# , |𝑁!,# , 𝜃!,#( , 𝜃!,#) )

𝑁!,# = |𝑁!,#|𝑒$%!,#
%

|𝑁&,'| → noise magnitude
𝜃&,'( → noise phase

𝑆!,# = |𝑆!,#|𝑒$%!,#
)

|𝑆&,'| → clean speech magnitude
𝜃&,'* → clean speech phase

𝑚! → noisy speech
𝑠! → clean speech
𝑛! → noise
𝑡 → time index

𝑀!,# → T-F noisy speech
|𝑀!,#| → magnitude response
𝜃!,#$ → phase response
𝑘 → frequency indexIC
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Group delay (GD) of signal 𝑆&,', 𝐺𝐷&,'* = ∠𝑒+(-!,#$%
& .-!,#

& )

Unlike magnitude response, the phase of a speech does not show a clear structure.

Group delay of a speech shows a learn-able pattern in log-magnitude formulation.

Background & Notation

Clean magnitude Clean phase Clean group delay
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Background & Notation
Optimal estimated magnitude loss function,

ℒ345 = ∑!,# (𝑆!,# − 𝑆!,#
6
+ 5𝑁!,# − 𝑁!,#

6

Optimal estimated group delay loss function, 

ℒ57 = 6
𝒳∈{(,)}

6
!,#

𝒳!,#<=
(1 − cos(<𝐺𝐷𝒳!,# − 𝐺𝐷!,#𝒳 ))

2

Optimal estimated magnitude and group delay loss function, 

ℒ345<57 = 𝜆ℒ345 + (1 − 𝜆)ℒ57
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Baseline LSTM Model
Clean speech 𝑆&,' and noise 𝑁&,' are considered as 2
separate sound sources 𝒳.

LSTM model takes magnitude of the mixture |𝑀&,'| and the
group delay of the mixture 𝐺𝐷&,'0 as inputs.

The output layer is branched in two ways, one is for
magnitude approximation | -𝒳&,'| , and another is for GD
approximation .𝐺𝐷&,'𝒳 of both speech and noise. 𝐺𝐷',()

#𝐺𝐷',(* #𝐺𝐷',(+
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Group Delay to Phase
Estimate phase difference between the enhanced speech and noise, 

/𝛿&,'𝒳 = ∠𝑒+ 2-!,#
𝒳 .-!,#

¬𝒳
= arccos 𝒯 0!,#

.
3 𝒳!,#

.
. ¬𝒳!,#

.

5|0!,#|⨂ 𝒳!,#

Sign of each T-F unit, >𝑔!,# ∈ −1,1 is calculated by, 

7𝑔&,8, … , 7𝑔&,9 = argma𝑥
:!,% ,…,:!,/

>
'

>
𝒳∈{*,(}

𝑐𝑜𝑠 B𝜃&,'38𝒳 𝑔&,'38 − B𝜃&,'𝒳 𝑔&,' − .𝐺𝐷&,'𝒳

By the formulation of trigonometric property of group delay, 
B𝜃&,'𝒳 𝑔&,' = 𝜃&,'0 + 𝛾𝑔&,' /𝛿&,'𝒳

Using dynamic programming within each t-f frame, we solve equations (1) and (2).

where, 𝒳 ∈ 𝑆,𝑁 ,
𝒯 E → clip values to [−1, 1]
⨂ → element-wise 
multiplication.

𝛾 = 1 when 𝒳 = 𝑆, and 
𝛾 = −1 when 𝒳 = 𝑁

(1)

(2)
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Recurrent Network limitation 
Time unrolled recurrent network predicts 𝑖&? time frame
conditioned on the frequency components of the (𝑖 − 1)&?
time frame.

Goal is therefore to capture temporal influence, not spectral
influence.

Spectral influence can be captured using a frequency
unrolled recurrent network.

Localization of frequency perception suggests that a
frequency component of 𝑖&? time depends on its neighbor
frequency components of 𝑖&? time.

Image source, https://colah.github.io/
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Intra-Spectral Bi-directional Recurrent 
(ISBR) layer

Each neuron of the ISBR layer represents a frequency bin of the signal.

Recurrent neurons from low to high frequencies and from high to low frequencies.

Spectral dependencies across both (increasing & decreasing) directions along frequency axis.
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Intra-Spectral Bi-directional Recurrent 
(ISBR) layer
𝚫 is the vector of activations, {Δ8, … , Δ@0}, based on inputs
from the prior LSTM layer and 𝑅A is the weight matrix, 𝛽A is
the bias vector.

𝑤','.8is the weight from 𝑘 − 1 B& to 𝑘&? frequency node.

𝜎 and 𝜎C are the activation functions for the feed-forward
and recurrent paths.

A LSTM network is first pre-trained, then an ISBR output
layer replaces the original output layer.

LSTM network learns the temporal dependencies and ISBR
learns spectral dependencies.
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Dataset
Train model with IEEE male (single speaker) corpus.

Evaluate using IEEE male (720 utterances) and TIMIT (multiple speaker, 6300 utterances) speech 
corpus.

4 Noise types- speech-shaped noise (SSN), cafeteria, factory, and babble.

Trained and validated in 3 SNR levels (-3, 0, 3 dB). 
Total training signals, 60000 (500 utterances) ~ 50 hrs.
Total validation signals, 13200 (110 utterances) ~ 11 hrs.

Tested in additional 2 SNR levels (-6 and 6 dB).
Total testing signals, 22000 (110 utterances) ~ 18.3 hrs.
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Experimental Setup
LSTM model
Single LSTM layer with 256 units and a time-distributed layer with 321 units.
4 separate output layers (one for each target) in parallel.
ReLU activation function is used for the two output layers that predict magnitude spectrograms.
Linear activation function is used in the dense layer and for predicting group-delay.
Adam optimizer, early stopping by validation set.

LSTM-ISBR (ISBR) model
Trained LSTM network.
Output layer of the LSTM network is replaced by ISBR layer, and the model is retrained.
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Results
Fig: PESQ scores for seen, unseen and 
overall SNR conditions for the IEEE corpus.
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IEEE	corpus TIMIT	corpus
PESQ STOI SI-SDR PESQ STOI SI-SDR

Mixture 1.86 0.62 -1.47 1.58 0.51 -2.33
L-Stackmag [1] 2.02 0.59 -0.59 1.82 0.5 -0.84
L-FTmag [2] 2.05 0.6 -0.2 1.88 0.52 -0.26

L-ISBRmag [3] 2.24 0.64 0.22 1.93 0.52 -0.03
LSTMmag+gd 2.24 0.64 0.12 1.97 0.53 -0.1
ISBRmag+gd 2.34 0.67 0.92 2.04 0.58 0.84

PC-tf-Mmag+phase [4] 2.31 0.67 0.85 2.04 0.58 0.72
PSMmag+phase [5] 2.27 0.65 0.4 2 0.56 0.32

Table: Average scores for each approach. Best results are shown in bold.
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Conclusion
Our approach outperforms the T-F masking approaches, which indicates that incorporating spectral-
level magnitude and phase dependencies are beneficial.

Proposed ISBR layer can used as output layer on top of any state-of-the-art model.

Only the first-order Markovian assumption considered in ISBR layer.

Explore higher-order spectral dependencies along with sub-band spectral dependencies in a single
time frame.
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Thank You

Khandokar Md. Nayem
knayem@iu.edu

Donald S. Williamson
williads@indiana.edu

ASPIRE Research Group, https://aspire.sice.indiana.edu/
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