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ABSTRACT

Computational objective metrics that use reference signals have
been shown to be effective forms of speech assessment in simu-
lated environments, since they are correlated with subjective listen-
ing studies. Recent efforts have been dedicated towards effective
forms of reference-less assessment to make real-world assessment
more practical, but these approaches predict a limited number of as-
sessment measures and they have not been evaluated in real-world
conditions. In this work, we present a novel reference-less based
framework called the attention enhanced multi-task speech assess-
ment (AMSA) model, which provides reliable estimates of multiple
objective quality and intelligibility measures in simulated and real-
world environments. The multi-task learning (MTL) architecture
effectively generates discriminative features that assist in improv-
ing our model’s robustness. An attention mechanism is employed
to identify key features within the feature space, and it noticeably
reduces the estimation errors. A classification-aided module is also
included to further suppress prediction outliers. Our model achieves
the state-of-the-art performance in simulated and real-world data en-
vironments, where the results are strongly correlated with the corre-
sponding reference-based objective scores.

Index Terms— speech quality and intelligibility, objective met-
rics, multi-task learning, attention networks, neural networks

1. INTRODUCTION

Speech quality and intelligibility are key factors when assessing a
listening environment, communication channel, or speech enhance-
ment algorithm. Subjective listening studies are the most accurate
forms of assessing speech quality and intelligibility, but this form of
assessment is general costly and time-consuming to perform when
large-scale assessment is needed [1]. Thus, computational objective
measures are often used, since they provide large-scale assessment
in a short period of time.

Objective metrics can be divided into two categories. Intrusive
(or reference-based) metrics assess the quality and intelligibility of
a distorted speech signal by comparing it to its clean undistorted
version. Hence, a clean reference signal is required. Commonly-
used intrusive metrics include the perceptual evaluation of speech
quality (PESQ) [2], short-time objective intelligibility (STOI) [3],
signal-to-distortion ratio (SDR) [4], perceptual objective listening
quality assessment (POLQA) [5], hearing aid speech quality index

This research was supported by a NSF grant (IIS-1755844).

(HASQI) [6], and the speech transmission index (STI) [7]. A funda-
mental limitation of intrusive metrics is that the reference signal is
usually not available in real-world environments or it may be diffi-
cult to obtain. Non-intrusive (or reference-less) metrics, on the other
hand, assess speech based on the distorted signal only, which means
that real-world assessment is possible. Example non-intrusive met-
rics include the ITU-T standard P.563 [8], ANIQUE [9], and the
speech-to-reverberation modulation energy ratio (SRMR) [10], to
name a few. Although reference-less based approaches enable real-
world testing, these metrics have been shown to be less correlated
to subjective ratings as compared to their reference-based counter-
parts [11, 12]. Hence, an active area of research involves developing
non-intrusive metrics that can assess speech in real-life scenarios and
that are strongly correlated with human assessment.

Many data-driven assessment approaches have been developed
recently [13, 14, 15, 16, 17], where the goal is to predict subjective
or objective scores. In [16], a full convolutional network is used to
estimate STI. AutoMOS [14] is a long short-term memory (LSTM)
model that assesses the naturalness of synthesized speech. A frame-
level speech quality evaluation model named Quality-Net that con-
sists of one bidirectional long short-term memory (BLSTM) layer
and two fully connected (FC) layers is proposed in [18], where the
authors predict PESQ. A similar approach is proposed in [19], where
the authors estimate POLQA at the frame level with a convolutional
neural network (CNN). Recently, Mel-frequency features and a deep
neural network (DNN) are used to predict the subjective mean opin-
ion score (MOS) of degraded acoustic signals [20]. Similarly, the
authors in [21] utilize a CNN to predict subjective intelligibility. Al-
though neural network-based non-intrusive speech assessment has
achieved considerable success, several significant issues remain un-
solved and require further development, including: 1) generalization
performance in unseen and realistic conditions (e.g., noisy and/or re-
verberant); 2) assessment approaches provide singular assessments
in terms of quality or intelligibility, but no approach provides both of
these assessments. A unified model that leverages different aspects
of speech assessment may be more robust.

In this paper, we propose an attention enhanced multi-task
speech assessment (AMSA) model to estimate objective speech
quality and intelligibility scores. Our model takes a speech signal
as input and generates the corresponding estimates of PESQ, ex-
tended STOI (ESTOI) [22], HASQI, and SDR in a single model.
These metrics reliably describe different attributes of speech. We
use multiple CNN layers to extract discriminative features and re-
duce unwanted variations. A BLSTM layer is then used to further
model the global temporal structure. An attention network [23] is
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then used to adaptively measure the importance of different compo-
nents within the feature space. From our prior work [24], we found
that jointly predicting the class and true objective score can further
reduce estimation outliers, so this structure is adopted here. Note
that we use objective scores as the training label as they are readily
available, unlike large-scale human assessment scores. We do this as
a proof-of-concept of our proposed algorithm, where this will serve
as preliminary work towards real-world human-level assessment.

2. MULTI-TASKS SPEECH ASSESSMENT MODEL

Multi-task learning (MTL) [25] has been beneficial to many speech
applications [26, 27, 28, 29]. In [30], the authors develop a linear hi-
erarchical Bayes (HB) predictor to fit subjective rating data, and the
results show that MTL offers a natural way to account for the het-
erogeneity of quality ratings. By applying a MTL paradigm in our
model, we aim to leverage the useful information contained in mul-
tiple related tasks to help improve the generalization performance.

Our proposed model utilizes the hard parameter sharing ap-
proach of MTL [31], by sharing the convolutional and BLSTM
layers between all tasks. Objective-specific attention and fully con-
nected layers (see Figure 1) are then used to predict objective scores.
Convolutions allow the model to detect intrinsic low-level local
patterns and generalize across frequency. The subsequent recurrent
BLSTM network captures the temporal structure. Attention layers
allow the model to focus on the key features to improve the per-
formance for a specific objective. The main tasks use the learned
latent representation from previous shared layers to output four es-
timates of speech quality or intelligibility. Adding classification as
an auxiliary task allows the model to suppress unwanted prediction
outliers.

2.1. Shared layers

The shared layers are constructed using four convolution blocks
(ConvBlock) and a BLSTM layer. A ConvBlock consists of a 2-D
convolutional layer with a kernel size of 3 × 3 and ReLU acti-
vations, batch normalization, and a 2 × 2 average pooling layer.
Although max-pooling layers make the output of convolution net-
works transitionally invariant, they may also cause the network to
lose information about the detailed T-F structures. Therefore, we
adopt an average pooling layer here. The number of output filters
for the four ConvBlocks are 16, 32, 64, and 128, respectively. The
output features from the last ConvBlock are then flattened into a
vector, and they are provided as input to the BLSTM layer which
has 128 hidden units in each direction. We determined the above
parameters empirically.

2.2. Attention block

For attention, we use the self-attention mechanism similar to [32],
as depicted in Figure 1, since this allows the network to key in on
task-specific information that may improve prediction performance.
Note that every task-specific subnet (e.g., predicted objective metric)
has its own attention block (AttnBlock). The attention block takes
as input the hidden states of the BLSTM, h = {h1, h2, . . . , hL}.
In self attention, all of the keys (hK

t ), values (hV
t ) and queries (hQ

t )
at time step t come from the same output of the previous layer (i.e.,
BLSTM). Thus, hK

t = hV
t = hQ

t . We pass a dot-product attention
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Fig. 1. The proposed attention enhanced MTL model.

model [33], fattn(hK
t , h

Q
i ) = hK>

t hQ
i , to a softmax function to

compute the attention weight:

αi,t =
efattn(hK

t ,h
Q
i )∑

t′ e
fattn(hK

t′ ,h
Q
i )
. (1)

Once the weights are obtained, the context vector ci is computed
as: ci =

∑L
t=1 αi,th

V
t , which is a dynamic representation of the

relevant part of the feature sequence at every output step i. It will be
used by subsequent regression and classification tasks.

2.3. Classification-aided module

The motivation for this module is that the regression task only gener-
ally minimizes the mean-square error (MSE), but this may result in
prediction outliers [24]. This occurs when large estimation errors are
“averaged out” by a large denominator (i.e., the number of test sam-
ples) when reporting MSE performance, which causes the model to
overfit. Including the classification-aided module punishes samples
with large estimation errors, and it leads to more robust performance.

For the k-th task, two training targets are simultaneously pre-
dicted. One is the raw objective score scorek,s of the speech signal
s, and the other is the corresponding categorical class classk,s. De-
fine Lk,thres and Hk,thres as the minimum and maximum values,
respectively, of the k-th objective score. Nk is the number of classes.
The classification label of the k-th objective score of a given signal
s is calculated as

classk,s = min(max

(
1, ceil

(
scorek,s − Lk,thres

(Hk,thres − Lk,thres)/Nk

))
Nk).

(2)
For the classification task, we use the cross-entropy loss as the ob-
jective:

Lk,cls = −
Nk∑
x=1

1(s, x) log(P(x|s)), (3)

where 1(·) is the binary indicator that identifies if the predicted class
label x matches the correct class label for signal s. P(x|s) is the
predicted probability that s is of class x.
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Table 1. Comparison results between several baselines and the proposed model on various test conditions of TIMIT data.
PESQ ESTOI HASQI SDR

MAE RMSE? PCC MAE RMSE? PCC MAE RMSE? PCC MAE RMSE? PCC

Noisy
TIMIT

MTL-Dense 0.15 0.16 0.92 0.05 0.04 0.94 0.04 0.03 0.91 1.26 1.14 0.93
MTL-Attn 0.10 0.09 0.96 0.03 0.02 0.98 0.02 0.02 0.96 0.71 0.72 0.99
Solo-AMSA 0.11 0.11 0.96 0.03 0.03 0.97 0.02 0.02 0.96 1.03 1.07 0.98
AMSA 0.09 0.09 0.98 0.03 0.02 0.99 0.01 0.01 0.98 0.67 0.67 0.99

Reverberant
TIMIT

MTL-Dense 0.18 0.20 0.86 0.05 0.06 0.90 0.07 0.04 0.81 1.52 1.74 0.84
MTL-Attn 0.12 0.16 0.88 0.03 0.04 0.93 0.03 0.03 0.81 1.03 1.32 0.86
Solo-AMSA 0.14 0.17 0.87 0.04 0.04 0.92 0.04 0.04 0.83 1.33 1.41 0.85
AMSA 0.13 0.15 0.90 0.03 0.04 0.92 0.03 0.03 0.82 0.78 0.85 0.90

Reverberant
noisy

TIMIT

MTL-Dense 0.16 0.18 0.86 0.03 0.05 0.90 0.06 0.05 0.83 1.38 1.23 0.91
MTL-Attn 0.12 0.14 0.90 0.02 0.03 0.96 0.03 0.03 0.86 0.52 0.64 0.92
Solo-AMSA 0.13 0.15 0.88 0.04 0.03 0.97 0.04 0.04 0.87 0.81 0.79 0.92
AMSA 0.12 0.14 0.89 0.01 0.02 0.98 0.03 0.02 0.86 0.36 0.42 0.94

2.4. Objective function

We train the entire network end-to-end with an unified loss func-
tion. The reason is that when training task-specific models simulta-
neously, the different but related models can interact at a high level,
such that they regularize each other and gain statistical strength. The
mean squared loss (regression loss denoted asLk,regr) together with
the classification lossLk,cls of the k-th task are utilized to update the
weights of the shared network:

Ltotal =

K∑
k=1

βk(Lk,regr + λk ∗ Lk,cls), (4)

where βk denotes the task weight of the k-th objective score predic-
tion task, and K is the total number of objective tasks. λk denotes
the loss weight of the k-th auxiliary task, which is a tunable param-
eter that balances the regression and classification terms.

3. EXPERIMENTS

3.1. Experiment setup

The TIMIT speech corpus is used to evaluate performance. Three
evaluation datasets are created: 1) a noisy dataset where 1,000 utter-
ances are corrupted by 12 noise types at one of 10 SNR levels (-15
db to 30 dB with 5 dB step); 2) a reverberant dataset where we create
120 artificial room impulse responses (RIR) using the image-source
method [34]. These RIRs are generated in 3 room sizes using T60s
from 0.05 to 0.4 with 0.05 increments. Each RIR is convolved with
10 clean utterances, and generates 12,000 reverberant speech sig-
nals. The third set consists of reverberant-noisy speech. For this set,
500 utterances are mixed with 12 noise types using one of 5 SNRs (0
dB to 12 dB with 3 dB step). We then convolve the resulting noisy
signals with another 60 RIRs, resulting in 6,000 reverberant noisy
speech signals. Finally, we split the 30,000 signals into training, val-
idation, and testing sets of 20,000, 5,000, and 5,000, respectively.

The sampling rate of the speech signal is 16 kHz. We use the
short-time Fourier transform (STFT) to extract the spectrogram from
each utterance (512 point FFT). A Hanning window with 512 points
and an overlap of 128 are used. Mean and variance normalization is
applied to the input feature vector.

Our model takes a 6-second clip of speech as the input, and it
outputs estimates of PESQ, ESTOI, HASQI, and SDR. PESQ covers
a scale from 1 to 5 under P.862.1. The range of ESTOI and HASQI
are from 0 to 1. The SDR range of our test data is from -22 to 35
dB. Since the range of each objective score is different, we want the
prediction cost of each score to contribute equally within the model.
Therefore, we set the task weight of each subnet to roughly be an
inverse proportion of the square of the corresponding score range,
that is, β1 = 1, β2 = 12, β3 = 12, β4 = 0.1 for PESQ, ESTOI,
HASQI, and SDR, respectively. Also, λk = 0.2 and Nk = 20 for
k = {1, 2, 3, 4}. These values are determined empirically.

We report three established measures for evaluating the per-
formance of non-intrusive methods: epsilon insensitive root mean
squared error (RMSE?) [35], mean absolute error (MAE), and Pear-
son correlation coefficient (PCC). RMSE? considers the confidence
interval (CI) when calculating prediction errors, where the value of
ε defines a margin of tolerance where no penalty is given to errors.
Thus, RMSE? can assess statistical significance. We use 95% CI as
recommended in [11, 19].

3.2. Experimental results

We first analyze the roles of multi-task training, attention, and clas-
sification in the proposed model, and set up three baselines: MTL-
Dense replaces the entire task-specific layer of the proposed model
with 2 dense layers (e.g., no attention or classification modules);
MTL-Attn does not include the classification module (i.e., only do
regression using attention output). Solo-AMSA adopts the same ar-
chitecture of the shared layers, but it only predicts one score (e.g.,
PESQ only or ESTOI only), where both regression and classifica-
tion modules are used. This is similar to our prior approach [24].

The results are shown in Table 1. In general, the performance
of the different architectures is similar for the four objective scores.
We can clearly see that the MTL-Attn significantly outperforms the
MTL-Dense consistently on different testing sets across all metrics.
For instance, the RMSE? of PESQ is reduced around 0.04 to 0.07
and that of SDR is halved. It indicates that introducing an attention
mechanism to enhance the key features in multi-task model is bene-
ficial for prediction accuracy. We also notice that the classification-
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Table 2. Performance of several state-of-the-art methods and the proposed model on TIMIT data. The best results are bold.
PESQ ESTOI HASQI SDR

MAE RMSE? PCC MAE RMSE? PCC MAE RMSE? PCC MAE RMSE? PCC

AutoMOS [14] 0.35 0.30 0.84 0.14 0.10 0.83 0.12 0.12 0.83 2.71 2.56 0.87
CNN [21] 0.29 0.27 0.86 0.07 0.06 0.93 0.08 0.06 0.90 2.13 1.97 0.91
DNN [20] 0.19 0.18 0.90 0.11 0.08 0.86 0.06 0.07 0.88 1.90 1.84 0.91
Quality-Net [18] 0.16 0.17 0.91 0.05 0.04 0.96 0.04 0.04 0.91 1.52 1.48 0.92
NISQA [19] 0.19 0.17 0.90 0.06 0.06 0.94 0.05 0.04 0.91 1.24 1.27 0.92

Solo-AMSA 0.14 0.13 0.92 0.03 0.03 0.95 0.03 0.03 0.90 1.03 1.08 0.93
AMSA 0.11 0.10 0.94 0.02 0.03 0.97 0.02 0.02 0.91 0.62 0.65 0.95

Table 3. Generalization results of three approaches on real-world corpora (COSINE and VOiCES).
PESQ ESTOI HASQI SDR

MAE RMSE? PCC MAE RMSE? PCC MAE RMSE? PCC MAE RMSE? PCC

Quality-Net [18] 0.56 0.63 0.69 0.17 0.19 0.56 0.1 0.12 0.71 4.37 5.69 0.67
NISQA [19] 0.34 0.38 0.77 0.14 0.18 0.63 0.06 0.08 0.75 4.13 4.55 0.71
AMSA 0.25 0.29 0.84 0.06 0.05 0.81 0.05 0.05 0.79 2.63 2.30 0.81

aided MTL model (i.e., AMSA) has slightly lower prediction errors
than MTL-Attn and has an obvious improvement in correlation (i.e.,
0.02 gain on average). Noticeable performance improvements from
Solo-AMSA to AMSA verifies the effectiveness of MTL. One rea-
son to learn common feature representations instead of using the solo
model, is that the representation from a single model may not have
enough expressive power for mismatched testing conditions. With
data from all tasks, a more powerful representation can be generated
that leads to improved performance.

We compare our approach with several state-of-the-art methods:
AutoMOS [14] consists of a stack of LSTMs, [21] is a CNN-based
approach, Quality-Net [18] uses BLSTM and FC layers, [20] uses
a DNN, and NISQA [19] uses a combination of CNN and LSTM.
Our model is trained jointly on four score prediction tasks, and other
comparison approaches will be trained separately on every single
task with the same set of hyper-parameters. As can be seen from the
results in Table 2, our method outperforms AutoMOS, CNN, and
DNN-based approaches in every score prediction task with a good
margin. Compared to Quality-Net and NISQA, AMSA still obtains
noticeable performance gains. Specifically, MAE, RMSE? and PCC
of PESQ are improved by 0.08, 0.07, and 0.04 compared to NISQA
while 0.05, 0.07, and 0.03 to Quality-Net. Meanwhile, AMSA out-
performs NISQA by reducing RMSE? of ESTOI (i.e., 0.03 absolute
value) by 50%. For HASQI, the PCC of Quality-Net and NISQA
are comparable with AMSA, but AMSA outperforms them in terms
of MAE and RMSE?. In fact, more SDR improvement is observed,
where AMSA gets 0.65 RMSE? that is much lower than the 1.27
of NISQA and 1.28 of Quality-Net. Note that Solo-AMSA obtains
performance improvements as well compared to other approaches,
which indicates the important roles of the attention mechanism and
classification-aided module in accurate speech assessment.

To test the generalization ability of our model in real-world envi-
ronments, we also consider two real-world datasets, namely COnver-
sational Speech In Noisy Environments (COSINE) [36] and Voices
Obscured in Complex Environmental Settings (VOiCES) [37] cor-

pora. COSINE is a set of multi-party conversations recorded in real
world environments with background noise and interfering speakers.
The recordings from the close-talking microphone and the body mi-
crophones (e.g., shoulder or chest) are used as the clean reference
and distorted speech respectively when calculating the ground-truth
objective scores. VOiCES was recorded by playing clean audio in
rooms of different sizes, each having distinct room acoustic profiles.
Background noise was played concurrently. We assess 1,500 dis-
torted signals from each of the above corpora, and compare AMSA
with the best two comparison approaches of Table 2 (i.e., Quality-
Net and NISQA). We summarize the results of these experiments
in Table 3. Not surprisingly, the performance of AMSA is declined
compared to the results on the simulated TIMIT dataset, but its drop
is much smaller than that of Quality-Net and NISQA. When consid-
ering these challenging test conditions where the speech corpus and
distortions are totally unseen, it is promising to learn that the MAE
and RMSE? are still within 6% of the actual range of each metric.
Moreover, the PCC is around 0.8 on average which indicates the
estimated scores follow the trend of the true scores well.

4. CONCLUSION

In this paper, we propose an attention enhanced multi-task model
for speech assessment, aiming to use a single model to predict a
number of objective speech quality and intelligibility metrics simul-
taneously. In particular, applying multi-task learning improves fea-
ture learning due to the underlying commonality among the tasks.
Different from existing non-intrusive approaches, we incorporate a
self-attention layer to detect the patterns within each feature map
that are relevant to the current prediction. This operation signifi-
cantly reduces the estimation error and improves the generalization
ability in real-world acoustic environments. We also conclude that
jointly training a classification-aided regression module is promising
for speech assessment.
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