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Abstract—Speech quality is best evaluated by human feedback
using mean opinion scores (MOS). However, variance in ratings
between listeners can introduce noise in the true quality label
of an utterance. Currently, deep learning networks including
convolutional, recurrent, and attention-based architectures have
been explored for quality estimation. This paper proposes an
exclusively attention-based model involving a Swin Transformer
for MOS estimation (SWIM). Our network captures local and
global dependencies that reflect the acoustic properties of an
utterance. To counteract subjective variance in MOS labels, we
propose a normal distance-based objective that accounts for
standard deviation in each label, and we avail a multistage
self-teaching strategy to improve generalization further. Our
model is significantly more compact than existing attention-based
networks for quality estimation. Finally, our experiments on the
Samsung Open Mean Opinion Score (SOMOS) dataset show
improvement over existing baseline models when trained from
scratch.

Index Terms—speech quality assessment, mean opinion score,
self-teaching, subjective variance

I. INTRODUCTION

Speech quality is a subjective measure of perceived speech
that human listeners best evaluate. Environmental noises,
reverberation, background speakers, networking systems, and
signal processing can degrade the quality of perceived speech
since they introduce unwanted sounds and distortions that
affect an intended listener. Quality assessment is therefore
of significance for evaluating and improving many systems,
including those for text-to-speech synthesis, voice conversion,
speech separation, and speech enhancement.

Assessment metrics are classified into objective and subjec-
tive categories, where objective metrics are deterministic and
their examples include Perceptual Evaluation of Speech Qual-
ity (PESQ) [1], Short Time Objective Intelligibility (STOI) [2],
and Perceptual Objective Listening Quality Analysis (POLQA)
[3]. Objective metrics can further be divided into intrusive
(requiring a clean reference and degraded input) and non-
intrusive (requiring degraded input only) categories, where
many well-performing methods are non-intrusive. On the
contrary, subjective metrics are dependent on human feedback
and their examples include Mean Opinion Score (MOS) [4]
and Multiple Stimuli with Hidden Reference and Anchor [5].
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Recently, researchers have been focusing on modeling sub-
jective metrics (primarily MOS) in a non-intrusive manner,
because objective metrics are not strongly correlated with
human perception [6] and a clean speech reference is not often
available in many real-world scenarios [7]. Also in recent times
deep learning architectures with end-to-end optimization have
substituted hand-crafted features previously used for quality
assessment. However, modeling a subjective metric using deep
learning is challenging for the following reasons. First, human-
labeled data is laborious and expensive to collect and hence
scarce. Second, human labeling is subjective and the same
speech signal can be labeled differently by multiple listeners.
Third, there exists an imbalance in MOS distribution with
average-quality signals being abundant, and very low and high-
quality signals much fewer.

Despite these challenges, research in deep learning has led
to significant advancements in modeling quality metrics. In ar-
chitecture design, convolutional architectures have been used,
both independently [8] and in conjunction with recurrent and
attention architectures to predict speech quality [9]. Using only
a convolutional network, the Deep Noise Suppression Mean
Opinion Score (DNSMOS) model [10] mapped magnitude
representations of speech to MOS using a mean-square error
(MSE) objective. Using a hybrid convolutional and recurrent
architecture, QualityNet [11] mapped magnitude representa-
tions to PESQ; whereas MOSNet [12] and Listener Dependent
Network (LDNet) [13] mapped magnitude representations to
MOS. Using hybrid convolutional and attention architectures,
the Convolutional Context-Aware Transformer (CCAT) model
[14] predicted MOS from magnitude representations using the
MSE objective, and the Multi-target speech quality assessment
network (MTQNet) [15] model predicted MOS from raw
waveform using Huber loss. Lastly, Dong et al. proposed a
hybrid convolutional-recurrent-attention model to directly map
an audio waveform to MOS, PESQ, eSTOI, and SDR using
end-to-end optimization of the MSE objective [16]. Most of
these models have used only magnitude representations as
input since phase is unstructured and has historically been
considered unimportant for a long time [17]. However, studies
have now shown the importance of phase in denoising [18]
[19], establishing the waveform input (implicitly containing
magnitude and phase) as more informational.
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Fig. 1. The architectural diagram of our proposed SWIM model. y corresponds to the MOS prediction of the input utterance.

In this paper, we propose SWIM, a novel attention-based
model for MOS prediction directly using an utterance signal.
Our architectural design is inspired by the Swin transformer
[20], which was originally proposed for images. We adapt it
to speech by configuring the architecture to operate on groups
of temporal frames, in contrast to image patches with spatial
structure. Swin transformer is chosen for quality assessment
because the acoustic properties of an utterance vary in time,
and it operates on local windows to capture them. In modeling
an utterance quality, we capture local features using Swin
transformers and global features using standard transformers.
Our model is deep yet compact, featuring 80k trainable pa-
rameters which facilitates generalization in sparingly available
MOS datasets. For training under noisy labels, we propose
penalizing a prediction based on its distance from the dataset
label and the quality of that label. It follows from the fact that
MOS labels of different utterances have different variances
in human ratings. A multi-stage self-teaching strategy further
enhances generalization by treating subjective variance as
noise in an unknown true label. Lastly, our experiments on the
Samsung Open Mean Opinion Score (SOMOS) [21] dataset
validate the architecture and show improvement in error and
correlation metrics over existing baseline models when trained
from scratch.

II. PROPOSED APPROACH

In the following subsections, we elaborate on our model
design, its underlying intuition, and training strategy. Our
training is aimed at improving generalization when MOS
ratings of an utterance vary between multiple listeners.

A. Model Architecture

The block diagram of our architectural design is shown
in Fig. 1. In the first step, a 1D waveform is divided into
small non-overlapping frames each of 1ms. This operation is
performed in the wave framing block, the output of which is
a 2D representation of frame indices and frame samples for a
single signal. The frame size is deliberately chosen as small
as it directly correlates with the subsequent model size.

In the second step, a linear embedding layer maps each
frame to a latent space of the same dimension. Commonly,
positional information is added to feature embeddings before
feeding them to a transformer layer since self-attention is
a permutation-invariant operation. However, we do not add

any positional encodings to our frame embeddings. We have
experimentally observed it to deteriorate model performance.
We believe it is because the positional information about se-
quential structure is more relevant to learning linguistic content
in speech. However, the acoustic content is independent of the
sequential structure and varies across a sequence. Hence, only
frame embeddings are fed as input to the Swin transformer.

In the third step, a Swin transformer captures local depen-
dencies within groups of frame tokens. This contrasts with a
standard transformer that captures global dependencies across
all input tokens. We elaborate on the working of our Swin
Transformer in subsection II-B. Its output has the same dimen-
sions as the input but encompasses local dependencies within
groups of frame tokens. We term this group of successive
frames as a ‘context’, whose duration is constant in each of
our blocks.

In the fourth step, the output of the Swin transformer is
fed to a max pooling layer. The 1D max pooling operation
merges a fixed number of successive frames in each layer,
compressing information across the temporal axis. Our choice
of max pooling differs from [20], where a linear layer was used
to merge image patches. We have experimentally observed
max pooling to perform better. We believe it is for the same
reason that a linear layer on top of flattened embeddings of
consecutive frames attempts to capture sequential structure.
We term a group of embedding or max-pooling layers with a
Swin transformer, a local modeling block. A hierarchy of these
blocks consecutively reduces the number of frames, while
capturing local dependencies within contexts. Our architecture
design has K + 1 such blocks, compressing an utterance to
only n frame tokens at the end.

In the fifth step, we prepend a learnable [MOS] token at the
start of these frame tokes and feed it to a standard transformer,
termed a global modeling block. This standard transformer
applies attention across all tokens, hence aggregating acoustic
information for the whole utterance. This information is also
shared with the [MOS] token during interaction in self-
attention. In total, we have M such standard transformer layers
cascaded sequentially.

In the last step, we have a shallow multi-layer perceptron
mapping global embeddings corresponding to the [MOS]
token to a scalar value. This scaler value is our MOS estimate
for the given utterance.



Fig. 2. Swin transformer for speech with 8 frame tokens.

B. Swin Transformer

The Swin transformer [20] was originally proposed for
images, however, we adapted it for speech. We explain its
mechanism using a toy example of an utterance with eight
frame tokens. The architecture diagram is shown in Fig. 2. It
consists of two standard transformer layers stacked one on top
of the other. The first layer models dependencies within con-
texts, whereas the second layer models dependencies within
shifted contexts. Shifted contexts ensure that dependencies at
context disjunctions in the first layer are also captured.

In the first transformer layer (left portion in Fig. 2), a layer
normalization step normalizes features of all frame tokes in
the utterance. Next, a frame-to-context operation groups frame
tokens into disjoint contexts via a reshaping operator, so only
local rather than global dependencies are captured. The multi-
head self-attention (MHSA) captures these local dependencies
within each context. Following this, a context-to-frame op-
eration reverts contexts into frame tokens via reshaping. A
residual term is added to all frame tokens through a skip
connection. This result is then passed through a sequence
of layer normalization (LN), multi-layer perceptron (MLP),
and another skip connection to yield the output of the first
transformer layer.

In the second transformer layer (the right portion in Fig. 2),
the input is circularly shifted to the left by half of the context
size. This shifting ensures that dependencies at disjunctions of
previous contexts are now captured in the newly formed shifted
contexts. The architecture of this transformer layer is identical
to the first one, except for masking during self-attention. It can
be observed that the start tokens [1, 2] and end tokens [7, 8]
are within the same context in the shifted sequence [7, 8, 1, 2].
We want to prevent modeling the cross-interaction between
the start and end tokens because they do not occur together
in the original sequence. For this reason, we use a boolean
mask to allow only end tokens [7, 8] to interact mutually and
start tokens [1, 2] to interact mutually but prevent their cross-
interaction.

C. Training Objective

Commonly, the mean squared error (MSE) or mean absolute
error (MAE) is chosen as the training objective for minimizing
the distance between the quality label and model prediction.
However, in subjective quality assessment, MOS is only an
estimate of the true label which is not equally good for
all utterances. Therefore, we propose using the Mahalanobis
distance between a model prediction and the distribution of
human ratings as the training objective.

Subjective ratings of an utterance have a mean value (re-
ferred to as dataset label) and standard deviation. Intuitively,
two model predictions 2 and 4 for different signals are
the same absolute distance from their corresponding MOS
labels 3 and 5 , respectively. However, if there exists a large
variance across listeners in the label value 3 (mean estimate
is weak), and no variance across listeners in the label value
5 (mean estimate is strong), then model prediction 2 should
be penalized less and prediction 4 penalized more. Hence, we
normalize the absolute distance by the standard deviation of
ratings and use the log to avoid overshooting when σ = 0.
Our training objective is given as

l = log10(1 +
|y − µ|
σ + ϵ

) (1)

where y is the model prediction, µ is the mean of opinion
scores, σ is the standard deviation across ratings, and ϵ is a
small constant empirically determined at 0.01.

D. Sequential Learning

We treat variance in ratings as noise in an underlying true
label and also adopt the SUSTAIN [22] framework as in [10].
It was proposed to enhance model generalization on a noisy
label dataset. It is a multistage self-teaching process, where
a model learning as a student in a given stage, serves as a
teacher in subsequent stages. The architecture of the teacher
and student model remains identical in all stages. In each
stage, our training label is the aggregate of the dataset label
and predictions from previously learned models. It is given as
.follows

yt = (α0 · µ) +
m∑
i=1

(αi · ti−1) (2)

where µ corresponds to the MOS label in the dataset and ti−1

corresponds to the prediction of a model trained in the previous
stage and weighted by αi. m is the total number of training
stages. In the extreme case when m = 1, t0 corresponds to
the prediction of the model trained on the dataset. The sum
of all weights αi is equal to 1.

III. EXPERIMENTATION

In this study, we use the Samsung Open Mean Opinion
Score (SOMOS) [21] dataset for training and evaluation. It
consists of 14100 training, 3000 validation, and 3000 test utter-
ances in English from a single speaker. The signals have been
synthetically distorted by varying their prosodic parameters.
MOS ratings for each signal have been collected to reflect
speech naturalness. Based on spurious labeling, the dataset is



divided into full and clean sets, where spurious ratings were
manually removed for the clean set. Our model processes
signals that have a fixed length of 20.48s and a 16kHz
sampling rate. All signals shorter than this are padded with
trailing silence. Our wave framing block divides utterances
into frames of 1ms. The embedding layer maps each frame
to another space of the same dimension.

SWIM has K + 1 local modeling blocks, where K=7. We
use M = 8 standard transformer layers for global modeling.
The embedding dimension and the number of heads across
all transformer layers are fixed at 16 and 4, respectively. The
MLP for mapping features to a scalar has 3 layers, of which 2
are dense having 16 units each, and the third is linear with 1
unit. For training, we use the AdamW optimizer with a 10−4

learning rate, annealed exponentially, and the batch size is set
at 8, a small number for good regularization. These values
were determined empirically and from the literature.

A. Architecture and Loss Analysis

We train two configurations of the SWIM architecture,
where positional encodings are either included or excluded,
and results are shown in Table I. Only fixed sinusoidal en-
codings [23] are analyzed, since learnable encoding increases
model size, making a fair comparison infeasible. It can be
observed that incorporating positional information is not help-
ful to the quality assessment task. This is because acoustic
information varies across an utterance and is independent of
position. We also analyze the effect of using a linear layer
versus a 1D max-pooling layer for merging frames across time
within the local modeling blocks. The results in Table I show
that the linear layer deteriorates performance, likely because
it learns sequential structure across frames in training data,
which impacts MOS estimation on the validation set.

Finally, we compare the SWIM model when it is trained
using three different loss functions including MAE, MSE, and
our proposed objective in (1). The MAE and MSE penalize
each prediction based on its distance from the MOS label,
whereas our objective penalizes each prediction based on the
distance and quality of each MOS label. For each objective,
the model is trained from scratch on utterance-level data. The
results are tabulated in Table I using the validation set.

TABLE I
PERFORMANCE ANALYSIS OF POSITIONAL ENCODINGS (PE), FRAME

MERGING (FM), AND TRAINING LOSS ON VALIDATION SET

Clean Set Full Set
MSE PCC SRCC MSE PCC SRCC

PE: Included 0.315 0.284 0.270 0.154 0.155 0.151
PE: Excluded 0.282 0.370 0.362 0.152 0.296 0.338

FM: Linear 0.305 0.274 0.278 0.148 0.224 0.220
FM: Pooling 0.282 0.370 0.362 0.152 0.296 0.338

Loss: MAE 0.273 0.382 0.365 0.132 0.360 0.335
Loss: MSE 0.269 0.404 0.394 0.130 0.377 0.346
Loss: Ours 0.282 0.370 0.362 0.152 0.296 0.338

TABLE II
COMPARISON WITH BASELINE MODELS ON FULL VALIDATION SET

Model MSE ↓ PCC ↑ SRCC ↑
MOSNet 0.598 0.218 0.238
LDNet 0.581 0.262 0.275

SSL-MOS 0.564 0.296 0.313
SWIM 0.130 0.377 0.346

We observe that the MSE objective results in the best perfor-
mance, and our proposed objective does not perform as well.
Perhaps it is because the error and correlation metrics assign
equal importance to all (prediction, label) pairs. In reality,
each label is not an equally strong quality representation of
its utterance. We will further explore this idea in future work.

B. Baseline Comparison

We compare against the reported performances [21] of
MOSNet [12], LDNet [13], and SSL-MOS [24] on the
utterance-level full dataset in Table II. The clean set is not
used since the authors used model checkpoints pre-trained on
different datasets. Likewise, the study in [25] used embeddings
from large pre-trained speech models [26], [27]. For a fair
evaluation of architecture only, in which data availability
and pre-training do not influence performance, we compare
SWIM (MSE objective) to other models when they are trained
from scratch using the same data. We observe significant
improvements in all metrics over all baseline architectures,
the linear correlation improving by 27% over the previously
reported best result.

C. Impact of Sequential Learning

We finally show the impact of sequential learning on noisy
MOS labels by comparing SWIM performance across stages.
Results for the student model in each stage are shown in Table
III on the utterance-level full set which has more noisy labels
than the clean set. The MSE objective is used for training since
σ=0 for teacher labels. The α values in successive order are
(0.4, 0.6) and (0.3, 0.3, 0.4) for stage 1 and 2 respectively.
We observe quicker convergence and better performance in
successive stages, indicating improved generalization under
subjective variance in MOS labels.

TABLE III
SWIM PERFORMANCE ACROSS SELF-TEACHING STAGES ON FULL SET

Stage Validation Set Test Set
MSE↓ PCC↑ SRCC↑ MSE↓ PCC↑ SRCC↑

Base 0.130 0.377 0.346 0.132 0.349 0.325
m = 1 0.128 0.389 0.369 0.127 0.385 0.359
m = 2 0.127 0.400 0.381 0.124 0.406 0.384

IV. CONCLUSION

We proposed a compact attention-only model for modeling
speech quality by capturing acoustic information at context
and utterance levels. Our architecture improves on existing
baselines and sequential learning improves generalization on
MOS labels under subjective variance.
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