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Abstract—Voice activity detection (VAD) is an integral part of
speech processing for real world problems, and a lot of work has
been done to improve VAD performance. Of late, deep neural
networks have been used to detect the presence of speech and
this has offered tremendous gains. Unfortunately, these efforts
have been either restricted to feed-forward neural networks that
do not adequately capture frequency and temporal correlations,
or the recurrent architectures have not been adequately tested
in noisy environments. In this paper, we investigate different
neural network configurations for voice activity detection. More
specifically, we explore solutions that incorporate multi-resolution
stacking and ensemble learning using convolutional, long short-
term memory (LSTM), and dilated convolutional neural network
architectures. We evaluate our approach using various speech sig-
nals that are captured in different amounts of noise. Our results
show that a multi-resolution ensemble approach using LSTM
recurrent neural networks performs best. This is demonstrated
for seen and unseen testing scenarios.

Index Terms—Voice activity detection, multi-resolution stack-
ing, deep neural networks, ensemble learning

I. INTRODUCTION

Voice activity detection (VAD) has been a topic of interest
for several decades, where telephone companies originally
wanted to detect the presence of speech in audio signals.
This technique has been used in a wide range of applications
including telemarketing, conference calling and digital voice
assistants. Given the recent growth of Voice over Internet
Protocol (VoIP) applications and the burst of connected de-
vices that are increasingly getting voice calling functionality,
accurately detecting speech has piqued in interest amongst
researchers.

One of the first VAD implementations was used for digital
mobile telephone service, where long and short-term filters
were used to identify periods of noise and block the trans-
mission of those parts [1]. The authors found that in a typical
conversation, a speaker talks for only about 40% of the time,
so the noise parts were removed from transmission. This
approach was trained and tested in mobile-phone related noise
conditions, such as moving cars. Human subjects validated
the outputs using different scoring metrics. The approach
performed better than the existing technology for high noise
conditions and it became the standard for Pan-European
digital-mobile telephone systems. Srinivasan and Gersho [2]
developed VAD models for cellular networks in stationary
vehicular noise and time-varying babble noise. The authors use
the VAD model from [1], but they include additional features,

such as, energy-level comparisons in individual frequency
sub-bands, measurement of spectral flatness of the output
signal after noise suppression and an adaptive hangover period.
The varying-noise VAD model uses energy levels and the
percentage of energy in the low-frequency bands. The authors
found that the stationary-noise model performed better in
low signal-to-noise ratio (SNR) conditions than the existing
methods. Haigh and Mason used cepstral features for VAD
[3]. The authors proposed using a form of cepstral analysis,
Perceptual Linear Prediction, that looks for variations between
speech and noise cepstra. The results of this model are shown
to be better than comparison models, since this approach
achieves similar performance and generalizes better without
knowing specific speech and noise levels.

Deep neural networks (DNN) have been used recently for
VAD. In [4], the authors explore deep belief networks (DBNs)
for VAD, where the authors argue that conventional machine
learning models cannot capture the nonlinear properties of
speech. A DBN with nonlinear hidden layers account for non-
linearity, overfitting and local maxima problems. This model
was tested under different seen and unseen noise profiles like
factory, vehicular, street and white noise, and it outperformed
alternative machine-learning based models. Zhang and Wu
propose a denoising DNN model for VAD [5], where a DNN
is initially pre-trained using an unsupervised algorithm. The
model is then fine-tuned using supervised back propagation.
The authors found better performance than traditional DBN
based models, and observed increasing performance as the
number of hidden layers increased. Recurrent neural networks
have also been used for voice activity detection [6], [7].
Boosted deep neural networks (bDNN) with multi-resolution
cochleagram (MRCG) features [8] and multi-resolution stack-
ing (MRS) [9] generated further performance gains [10]. The
authors propose a three-tiered model for boosting contextual
information in voice activity detection. The top level employs
an ensemble learning framework with MRS. The middle level
uses boosted DNNs, which modify the input feature and output
training target of a feed-forward neural network, to account for
temporal correlations. The bottom level uses signal-processing
techniques for feature extraction. The authors trained and
tested on different types of seen and unseen noises. They ob-
served great generalization performance, especially in unseen
test scenarios.

Boosted DNNs for VAD is a promising direction, but it is
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Fig. 1. An example one-dimensional input passed into a boosted DNN

unclear on whether a feed-forward deep neural network is the
best architecture. In this paper we use a similar three-tiered
model, but we experiment with different types of neural net-
work base classifiers. More specifically, we explore different
boosted and multi-resolution configurations of convolutional
neural networks (CNNs), long short-term memory (LSTM)
recurrent neural networks (RNN), and dilated CNNs. We
additionally test using several noise environments. We use the
area under the ROC curve (AUC) to evaluate each model. Our
results show that more sophisticated models that better capture
temporal correlations offer additional performance gains over
traditional feed-forward architectures, even when boosting and
multi-resolution data are used.

The remaining portion of this paper is organized as fol-
lows. We describe boosted deep neural networks and multi-
resolution stacking in section II. Our proposed approach is
described in section III. Our experiments, results, and conclu-
sions are given in sections IV and V.

II. BOOSTED DEEP NEURAL NETWORKS AND
MULTI-RESOLUTION STACKING

A boosted deep neural network is an ensemble learning
model that makes multiple predictions for each temporal input
frame, where each frame of the input and output includes
information from neighbouring frames. In the first step, each
data frame is expanded to 2W +1 frames on the time axis by
adding W frames to the left and right of the current frame.
W is a user-defined half-window size. The expanded input
data is fed to a neural network where the output dimension is
also 2W + 1, to account for the temporal context in training
targets across multiple frames. The label of each frame is
then used to train the neural network. In the testing phase,
the 2W + 1 predictions of each frame are averaged and a
threshold is applied to perform classification. Fig.1 shows a
bDNN example for a simple one-dimensional input.

Multi-resolution stacking builds off of bDNNs by incor-
porating varying number of neighbouring frames with lay-
ered bDNNs for better contextual prediction. Getting multi-
resolution information adds value that improves prediction
performance. Each classification task may be modeled best
with a specific resolution (e.g. window size), but it is not
practical to empirically determine the appropriate window size
for each problem. Multi-resolution stacking eliminates this
problem, as boosted DNNs with different window lengths are
stacked in a layered manner [9]. Additionally, the outputs of

Fig. 2. A two-layered Multi-Resolution Stacking model with a boosted DNN
as the base predictor. The inputs are boosted with different window lengths,
and outputs are passed across layers

each layer are combined with the original input before passing
on to the next layer, see Fig.2.

III. PROPOSED APPROACH

We propose to use different neural network architectures
for the boosted DNN. These architectures include a convolu-
tional neural network (CNN), dilated CNN, and long short-
term memory (LSTM) recurrent neural network (RNN). We
compare against the original feed-forward DNN approach
from [10]. All the proposed neural networks use Adaptive
Moment estimation (Adam) [11] as the optimization strategy
and a mean square error loss function. Adam optimization is
computationally effective and better for handling large datasets
in complicated models, and hence well suited for this problem.

A. Convolutional Neural Network

We first consider a CNN model, since they capture in-
formation across small time-frequency segments and they
have performed well for classification tasks [12], [13]. The
CNN consists of one input convolutional layer, one hidden
convolutional layer, a hidden dense layer and the final output
layer. Each convolutional layer has a varying number of filters
(32, 64 and 128) with a kernel of size 3 × 3. The second
convolutional layer is followed by a max pooling function
with a pool size of 2× 2. The ReLU activation function [14]
is applied after each convolutional layer. The hidden dense
layer has 512 units with ReLU activation functions, whereas
the output layer uses a sigmoid function. Each layer, except
the input and output, has a 20% dropout rate to prevent over
fitting. Different experiments were conducted to determine
these parameter values and network configuration, where the
best performing approach is used.

B. Dilated Convolutional Neural Network

Dilated CNNs were introduced first by Fisher and Vladlen
[15] as a way to incorporate global contextual information in
convolutional layers without exponentially increasing model
complexity. It builds on a regular convolutional layer and
introduces a new parameter called dilation rate. Dilation rate
indicates the degree of spatial separation between the samples
considered for convolution. For example, a convolutional layer
with a dilation rate of 2 will select every alternate sample from
the input. By introducing spaces between selected samples,
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a larger frame of the input (time-frequency representation of
sound) is considered, which adds global context to the model
while also keeping the model complexity low. Typically a
regular convolutional layer is followed by one or more dilated
layers to incorporate additional contextual information.

We use a dilated CNN model that consists of one convolu-
tional input layer, two dilated convolutional layers, a hidden
dense layer and the output layer. Each of the convolutional
layers contains 32 filters with a 3 × 3 kernel size, followed
by ReLU activations. Max pooling is performed after each
dilated layer, where a 2× 2 pool size is used. A 20% dropout
rate is used in all layers, except the input and output layers.
The hidden dense layer has 512 units and ReLU activation
functions. The output layer uses a sigmoid activation function.
Different experiments were conducted, where the dilation rate
for both layers was held variable in each round and the model
accuracy was measured.

C. Long Short Term Memory Network

LSTMs are a type of recurring neural network that has
better memory retention capabilities than a feed forward neural
network. Our LSTM network has one LSTM input layer, one
hidden LSTM layer, two hidden dense layers and an output
layer. Both LSTM layers have 32 units each (dropout of 20%)
and use hyperbolic tangent (tanh) activations. The two hidden
dense layers each have 512 units with ReLU activations.
The sigmoid activation function is used in the output dense
layer. We experimented with different configurations of LSTM
networks and found this setup to give maximum accuracy on
development data.

D. Input Features and Multi-Resolution Stacking

We use the multi-resolution cochleagram (MRCG) features
as inputs to our approach, which was also done in [16]. A
cochleagram provides a time-frequency representation of an
audio signal, and it mimics the processing that the human ear
performs. A cochleagram is greatly influenced by the selection
of frame size, as this influences time and frequency resolution.
Using a smaller frame size increases time resolution, but
compromises frequency resolution. Similarly, using a bigger
frame size increases frequency resolution, but reduces tem-
poral resolution. The MRCG feature combines cochleagrams
with two different resolutions (big and small), to ensure good
temporal and frequency resolution. These two cochleagrams
are each smoothed using an averaging function.

We use a two-layered MRS model, where the half-window
lengths (e.g. W1 and W2) are equal in each layer (see Fig. 2).
In the first layer, the input features are first augmented using
the window length. These are provided to a bDNN (see Fig.
1), where the bDNN is either based on a CNN, LSTM, or
dilated CNN model. We use an ensemble of eleven bDNNs in
the first layer, where each one uses a different window length
to account for varying degrees of temporal information. The
eleven window lengths of W1 are {1, 7, 11, and 19 : 4 : 51},
where MATLAB notation (e.g. x : y : z) is used to take
all values between 19 and 51, with increments of 4. As in

[10], a different dilation rate is also used for each window
length (11 dilation rates in total) to reduce computational
complexity. The dilation rates are chosen so that 7 samples
are contained in each window. Each of the eleven bDNNs
is trained independently. The eleven bDNN outputs are then
each concatenated to another copy of the input features that
are augmented with the same half window length that was
previously used, resulting in eleven new input features that
are provided to the second MRS layer. The second MRS
layer, hence, consists of eleven additional bDNNs (one for
each window length), where each gets its corresponding input
from the first MRS layer. The second layer’s bDNN model
then makes a prediction based on the modified input. The final
voice activity prediction is made by averaging the predictions
from the ensemble bDNNs in the second MRS layer. Note that
the selected parameter values are based on recommendations
from [10].

IV. EXPERIMENTAL SETUP AND RESULTS

A. Dataset Generation

We use two different datasets to test our approach. First, we
use the AURORA2 [17] speech corpora, where 700 utterances
from male and female speakers are randomly chosen. These
speech signals are then mixed with babble noise at a -5 dB
signal-to-noise ratio (SNR). MRCG features are computed
from the noisy speech data using the same parameters as in
[16]. The data is then randomly split into 300 training and 400
testing utterances. The VAD labels are generated by applying
the statistically-based VAD algorithm proposed by Sohn et al.
[18] to the clean speech corpora. The mixed audio signals are
merged into one long file each for training and testing. Testing
is performed on partially unseen data, since we randomly split
the data into training and testing sets.

The second dataset is generated from the IEEE male and
female speech corpus [19]. 1440 speech utterances are split
randomly into smaller batches of 144 files, and then used for
training and testing the VAD model. The utterances are mixed
with babble, restaurant, factory, traffic and train noises. Addi-
tionally, to test the model’s performance on unseen noises, the
testing clean speech data is also mixed with unseen helicopter
and radio static noises. The signals are mixed at -5, 0 and
5 dB SNRs. Labels are generated for both seen and unseen
datasets by passing the clean speech signals through the VAD
algorithm proposed by Sohn et al. [18] and implemented by
Kim [20].

B. Results and Discussions

Our approach is evaluated with the area under the ROC
Curve (AUC), as it is often used to assess VAD performance
[7], [10]. The different neural network configurations defined
above are tested, where we compare against the original deep
neural network (DNN) based approach as defined in [10]. The
DNN in this approach contains two-hidden layers with 512
ReLU units in each layer.

Table I shows the results for the baseline DNN approach
and the proposed approaches that use different neural network
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TABLE I
COMPARING VAD PERFORMANCE WITH DIFFERENT NEURAL NETWORK

CONFIGURATIONS ON THE -5 DB, AURORA2 DATASET

Approach AUC

DNN [10] 81.7%
CNN 81.9%

Dilated CNN 82.9%
LSTM 83.5%

architectures. These systems are trained and tested with the
AURORA2 noisy speech dataset, where the SNR is -5 dB.
Note that each proposed configuration improves performance
over the baseline DNN, as measured by AUC. More specifi-
cally, the CNN offers a slight improvement (e.g. 0.2%) over
the DNN approach. This likely occurs because the CNN
better captures temporal and frequency correlations during
the convolutional feature mapping stage. The LSTM boosted-
DNN approach results in the largest performance gains, where
the AUC score is 83.5%. This is considerably better than all
other approaches. Voice activity detection is highly correlated
across time, and the LSTM-based ensemble approach ade-
quately captures these temporal correlations. The dilated CNN
approach also performs better than all other approaches, except
the LSTM approach. This is interesting because this indicates
that dilation, which expands temporal range using the same
amount of context data, performs better than a CNN. This
indicates that longer range information also helps with voice
activity detection.

The CNN model has more than two layers, however, so
performance gains over the DNN may be attributed to this.
Thus, we trained a DNN with varying number of layers. Table
II shows how DNN VAD performance varies with the number
of layers. The results show that increasing the number of layers
to 4 gives the best results, which is now slightly better than
the CNN VAD performance, but still worse than the dilated
CNN and LSTM approaches.

We additionally show results for the different architectures
by varying key parameters. In particular, we vary the number
of filters in the CNN and the dilation rate in the dilated CNN.
As Table II shows, increasing the number of filters in the CNN
does not improve VAD performance. Likewise, only slight
inconsistent changes occur with a change in the dilation rate.

We further train and test the best performing LSTM, DNN
and Dilated CNN models under more noise and SNR condi-
tions. We use the IEEE male and female speech utterances
that are mixed with seen and unseen noise profiles. The clean
speech corpora are mixed with babble, forest, restaurant, traffic
and train noise profiles, and this data is divided into seen
training and testing sets. To test the model’s performance
on unseen noise profiles, the testing clean speech data is
mixed with helicopter and radio static noise, while keeping the
training signals constant. This data is generated at -5, 0 and 5
dB SNRs. We measure the AUC under different noise profiles
and average the results across the respective SNR levels. The
results of the VAD models on seen and unseen noise profiles

are presented in Table III. As a general trend, we note that
higher SNR levels have better VAD performance, which is

TABLE II
RESULTS WHEN VARYING KEY PARAMETERS

DNN CNN Dilated CNN
# Layers AUC # Filters AUC Dilation AUC

1 81.4% 32 81.9% 2 82.9%
2 81.7% 64 81.6% 4 82.7%
3 81.3% 128 81.6% 6 82.9%
4 82%

TABLE III
VAD RESULTS USING IEEE SPEECH CORPORA, UNSEEN NOISES AND

MULTIPLE SNRS

Model Type SNR (dB) Seen Noises Unseen Noises
Helicopter Radio

LSTM
-5 79.5% 73.6% 74.8%
0 87.1% 83.4% 84.8%
5 91.4% 89.9% 90.7%

Dilated CNN
-5 80% 73.6% 73.1%
0 86.9% 82.8% 81.1%
5 91% 89.5% 88.4%

DNN
-5 78.3% 67.8% 69.7%
0 86.4% 77.2% 78.2%
5 90.9% 86.2% 85.5%

expected, since the detection will be more accurate with higher
levels of speech in the mixture. Upon comparing the results
of different neural network types, we observe that the LSTM
has the best overall performance. More specifically, the LSTM
performs best for the seen noise case at 0 and 5 dB SNRs,
and it performs best at all SNRs for the unseen testing cases.
However, the performance of Dilated CNN is close to that of
the LSTM model, especially in lower SNR levels. The DNN
performs worse among the three comparison approaches, in all
categories, where the performance gap compared to the LSTM
is greater under unseen noise conditions.

V. CONCLUSION

We have proposed the use of different ensemble neural
network configurations for voice activity detection. We ob-
tained a significant performance increase when compared to
a comparison approach [10]. The use of an LSTM ensemble
provided the best results among all other types of networks,
showing that retaining contextual information is best suited for
this problem. Our LSTM model also demonstrated excellent
generalization performance on both seen and unseen results
at different signal to noise levels. This opens up the path
for further work to explore alternative recurrent-ensemble
approaches and for attention-based models to obtain further
performance gains, since they have been recently shown to
handle contextual information better.
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