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ABSTRACT

Dereverberation is often performed in the time-frequency do-
main using mostly deep learning approaches. Time-frequency
domain processing, however, may not be necessary when re-
verberation is modeled by the convolution operation. In this
paper, we investigate whether deverberation can be effectively
performed in the frequency-domain by estimating the com-
plex frequency response of a room impulse response. More
specifically, we develop a joint learning framework that uses
frequency-domain estimates of the late reverberant response
to assist with estimating the direct and early response. We
systematically compare our proposed approach to recent deep
learning based approaches that operate in the time-frequency
domain. The results show that frequency-domain processing
is in fact possible and that it often outperforms time-frequency
domain based approaches under different conditions.

Index Terms— Deep neural network, frequency re-
sponse, speech quality, dereverberation

1. INTRODUCTION

Reverberation degrades perceptual speech quality and intel-
ligibility as sound reflections obscure signal structure. This
creates a challenge for many applications, including, hearing
aids, automatic speech recognition and speaker identification.
Many methods have been proposed to remove reverberation.
Zhao et al., for example, proposed a long short-term memory
(LSTM) deep neural network to predict late reflections in the
time-frequency (T-F) domain [1]. The predicted late reverber-
ation is subsequently subtracted from the reverberant speech
signal. Han et al. develop a spectral mapping approach that
predicts anechoic speech from reverberant speech by splicing
the log-magnitude response and using a deep neural network
(DNN) for prediction [2]. Williamson el al. use a complex
ratio mask (cIRM) [3] for derverberation, where the mask en-
hances the magnitude and phase T-F responses [4]. The ap-
proach takes a complementary set of T-F features as inputs
and estimates the cIRM, which is then used to recover ane-
choic speech. Nakatani et al. proposed a unsupervised tech-
nique, known as the weighted prediction error (WPE), which

estimates an inverse filter that is subtracted from the rever-
berated speech [5, 6]. Delfarah et al. proposed a two staged
mask estimation that uses multi-dimension features and esti-
mates T-F domain masks [7]. Sun et al. proposed an approach
that took T-F domain features as input and predicts derever-
beration mask (DM) and IRM to recover the speech [8]. In
[9], a recurrent neural network (RNN) based approach is used
for dereverberation. The above approaches use different ma-
chine learning techniques to perform dereverberation, but the
estimation process is always conducted in the time-frequency
domain.

Many years ago, however, dereverberation was performed
in the frequency-domain using different signal processing ap-
proaches. In [10], inversion is used to deconvolve mixtures
that are generated through convolution. A two-stage inverse
filtering algorithm is developed in [11], where the implemen-
tation occurs in the frequency domain. Many other frequency-
domain dereverberation methods were also proposed [12, 13,
14]. These approaches use methods such as independent com-
ponent analysis (ICA) that required assumptions based on the
room impulse response to hold, which is not always possi-
ble [15]. Frequency-domain deep learning-based approaches,
however, may not need to make these assumptions, so it may
be possible to return to frequency-domain processing.

In this paper, we train a joint LSTM dereverberation ap-
proach that uses an estimate of the late reverberation transfer
function to help predict the transfer function of the direct and
early signal. This approach operates completely in the fre-
quency domain. This is done because reverberation is mod-
eled by the convolution operator, which can be performed in
the frequency domain, regardless of the time-domain struc-
ture of speech. More specifically, the joint deep neural net-
work is trained jointly using both real and imaginary compo-
nents to enhance magnitude and phase information.

The rest of this paper is organized as follows. Section 2
discusses the relation to prior work. Section 3 describes the
details of the problem and proposed model. Our experimental
setup is given in section 4. Section 5 discusses the results
and comparison approaches. Finally, a conclusion is given in
Section 6.
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2. RELATION TO PRIOR WORK

The work proposed here focuses on speech dereverberation
in the complex frequency domain. Previous studies on this
topic perform dereverberation in the spectral-magnitude do-
main [2, 7, 6, 16]. Although complex domain dereverberation
is presented in [17, 3], their approach is mainly focus on T-
F domain features. In addition, techniques in [1] predict the
magnitude of late speech, and subtract that from the rever-
berant speech, so it does not estimate the late and direct plus
early responses together. Our approach, on the other hand,
requires only frequency information and utilizes both late and
direct plus early information to predict the transfer function
of the room impulse response (RIR).

3. ALGORITHM DESCRIPTION

3.1. Problem Description

A reverberant speech signal can be computed as the convolu-
tion of a clean speech signal s(t) with a RIR, h(t)

x(t) = s(t) ∗ h(t) (1)

where * denotes convolution. The RIR can be decomposed
into the sum of the direct RIR, early RIR and late RIR (e.g.,
h(t) = hd(t) + he(t) + hl(t)). Replacing h(t) in equation 1
with this definition, results in:

x(t) = s(t) ∗ hd(t) + s(t) ∗ he(t) + s(t) ∗ ht(t)

= s(t) ∗ hde(t) + s(t) ∗ hl(t)
(2)

where hd(t) denotes the RIR of the direct sound, he(t) de-
notes the RIR of the early reflections, hl(t) denotes the RIR
of the late reflections, and hde(t) denotes the RIR of the direct
sound plus early reflections. The objective of this study is to
remove the late reflections (e.g. xl(t) = s(t)∗hl(t)) from the
corresponding reverberant signal.

3.2. Features and training labels

Given a reverberant speech signal in the time domain, we
compute the 1024-point discrete Fourier transform (DFT). We
then concatenate the real and imaginary components of the
1024-point DFT as our input. This input is normalized using
Min-Max normalization that is calculated across all real and
imaginary components separately [18]. This results in values
between 0 and 1. Let Y (m) denote the normalized and con-
catenated input for the mth signal. Y (m) and the full input
matrix into our proposed system are defined as,

Y (m) =

[
Yi(1)Yi(2) . . . Yi(N)
Yr(1)Yr(2) . . . Yr(N)

]
Y = {Y (1)Y (2) · · ·Y (NS)}

(3)

where we assume the frequency indexing starts at 1 and N
denotes the finite number of DFT points, which is 1024 in
this study, and NS denotes the number of training samples.

We elect to predict transfer functions of the RIRs instead
of speech. Recent work has shown that predicting mask-
ing outperforms predicting speech in the time-frequency do-
main [19], so in this case, we elect to predict the transfer func-
tion instead of the speech itself. We transform the direct plus
early RIR (hde(t)) and the late RIR (hl(t)) into 1024-point
DFTs. We also concatenate the real and imaginary compo-
nents of the resulting DFT into one matrix, and this serves as
the training label. The labels can be expressed by the follow-
ing feature matrix,

Hl(m) = {Hl(1)Hl(2) · · ·Hl(N)}
Hde(m) = {Hde(1)Hde(2) · · ·Hde(N)}

(4)

As is done for the input data, we did Min-Max normaliza-
tion on the training labels as well since this improved perfor-
mance. During testing, we de-normalize the output based on
the prior calculated min and max values.

3.3. Network architecture

We use a joint deep neural network to estimate the frequency
response of the RIRs. The joint network is trained to first
map the features of the reverberant signal to the frequency
response of late RIR. This estimate is then combined with the
input features and supplied to another network that estimates
the frequency response for the direct plus early RIR. Fig. 1
shows the network structure of the joint LSTM network. We
experiment with a joint fully-connected network and a joint
LSTM network.

The joint-fully connected network (joint FCN) passes
the input matrix through three fully-connected hidden layers,
where the first two layers have 2048 units and the third hid-
den layer has 1024 units. Rectified linear activation functions
are used in the hidden layer. Then, we take the output of the
first three hidden layers (estimate of late transfer function),
and concatenate it with the original input feature matrix, and
this becomes a new feature matrix. We pass this new feature
matrix to three similar fully connected layers, where the first
hidden layer has 4096 units since the new input matrix for
this layer is double the size of the input matrix. Also, these
three layers used rectified linear activation functions.

For the joint-LSTM approach, the input features are pro-
vided to three LSTM layers, as shown in Fig. 1. The hidden
size is set to 2048. As is shown in Fig. 1, we only take the
last hidden state from the third hidden layer, which outputs
a vector of size 2048. This output is reshaped and concate-
nate with the original input matrix as a new input for the next
stage. Then we set the hidden size to 2048 units. Finally,
we take the last hidden state from the last hidden layer as our
output. Rectified linear activation functions are applied to all
LSTM layers.
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Fig. 1. Illustration of the proposed joint approach.

We train the joint-FCN and joint-LSTM networks with
Adam optimizer, and the learning rate is set to 0.0001. We
use the mean-square error (MSE) as the objective function.
The batch size is set to 32 for joint FCN, and to 20 for joint
LSTM. All signals are either truncated or padded to the mid
length of the sample.

The joint FCN and joint LSTM networks are trained using
the standard back propagation algorithm with mean-square er-
ror cost function,

1
2N

∑
f

[(
Ĥr

l (f)−Hr
l (f)

)2
+
(
Ĥi

l (f)−Hi
l (f)

)2]
+ 1

2N

∑
f

[(
Ĥr

de(f)−Hr
de(f)

)2
+
(
Ĥi

de(f)−Hi
de(f)

)2]
(5)

where Ĥr
l (f) and Ĥi

l (f) are the estimated real and imaginary
components of late RIR’s transfer function that are generated
from the first stage, N is the number of features of each input,
which is assumed to be 1024 units in this study. Similarly,
Ĥr

de(f) and Ĥi
de(f) are the real and imaginary components

that are generated by the whole network.

The joint network estimates the normalized version of
Ĥr

de(f) and Ĥi
de(f). During the testing phase, the values are

de-normalized using the following:

Ĥr
de(f) = Ĥr

de(f)
(

max(r) − min(r)
)
+ min(r)

Ĥi
de(f) = Ĥi

de(f)
(

max(i) − min(i)
)
+ min(i)

(6)

where max(r) and min(r) denotes the max and min value in
real components of direct plus early FFT of RIRs, and max(i)
and min(i) denotes the max and min value in imaginary com-
ponents of direct plus early FFT of RIRs.

4. EXPERIMENTS

4.1. Experimental setup

The proposed system is evaluated using the TIMIT corpus
[20], which is spoken by people from different regions of the
United States. In our experiments, we randomly choose 3000,
1000, and 1000 sentences to construct our training, validation
and testing datasets. All 5000 sentences are down-sampled
to 16kHz. We simulate RIRs from 5 different rooms, with
respective dimensions of: 9m ×8m ×7m, 10m ×7m ×3m,
6m ×6m ×10m, 8m ×10m ×4m and 7m ×7m ×8m, re-
spectively. The distance between the receiver and the speaker
is set to 1m in all cases. The image method is used to gener-
ate the RIRs [21]. We select 3 different reverberation times
(i.e., 0.3s, 0.6s and 0.9s) to represent low, moderate, and
high reverberation conditions. We simulated 500 different
RIRs for each T60, resulting in 1500 different RIRs for each
room for training. 500 different RIRs are generated from the
fourth room for validation data, and another 500 different
RIRs are generated from the fifth room for test data. In order
to make the dataset reasonable for training, we combine each
RIR with two different speech signals. As a result, there are
3000×3(T60s)= 9,000 reverberant utterances in the training
set; 1000×3(T60s) = 3,000 reverberant utterances in both the
validation and testing sets.

To avoid round off errors and to ensure the network learns,
we scaled RIRs by 1000 before we combine it with the clean
speech. The training targets are also scaled by 1000. During
testing, we remove the scaling, and convert back into the time
domain. Since we assume the known size of FFT is 1024, we
can only inverse the FFT back to the same size. In order to
evaluate the performance of our approach, we convolve the
predicted direct plus early RIRs with clean speech, and com-
pared with direct plus early speech we generated through the
image method.
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Table 1. Comparison with different approaches
SDR (dB) STOI PESQ

0.3 0.6 0.9 0.3 0.6 0.9 0.3 0.6 0.9
Mixture -1.89 -2.98 -4.01 0.58 0.48 0.43 1.7 1.42 1.25

Joint FCN 7.69 7.23 8.03 0.77 0.66 0.67 2.28 2.02 2.11
Joint LSTM 7.53 9.32 8.92 0.60 0.64 0.68 2.12 2.10 2.13
cIRM [17] 7.90 7.32 7.95 0.73 0.70 0.71 2.28 2.03 2.09
IRM [7] 7.62 7.27 7.54 0.72 0.70 0.70 2.23 2.00 2.01

Spectral Mapping [2] 7.28 7.25 7.48 0.71 0.69 0.68 2.01 1.97 1.90

4.2. Comparison Approaches

In our experiments, we compare our proposed approach with
three baseline approaches: cIRM estimation [17], the Idea
Ratio Mask (IRM) similar to [7], and Spectral Mapping ap-
proach similar to [2]. We train Spectral Mapping, IRM and
cIRM with a 3-layer DNN, which is done in the original ap-
proaches. Also, we modify the target of Spectral Mapping to
the direct plus early speech and re-define the IRM and cIRM
oracle masks, so that the approaches are aligned with our pro-
posed approach.

5. RESULTS

The perceptual evaluation of speech quality (PESQ) [22],
Short-Time Objective intelligibility (STOI) measure and sig-
nal to distortion (SDR) are used to evaluate performance. The
PESQ score ranges from -0.5 to 4.5, the STOI measure range
from 0 to 1, and SDR has no specific range, but for all three,
higher values indicate better performance.

Table 1 lists all the comparison scores for the different ap-
proaches. The best performance is shown in bold. In terms
of SDR, all approaches get reasonable scores. cIRM particu-
larly performs best at T60 of 0.3. Our joint-LSTM approach
outperforms the comparison approaches as the T60 increases.
In terms of STOI score, for the proposed approaches, there
are some improvements compared to the mixture, but not as
good as cIRM and IRM, which perform better when T60 in-
creases. When T60 is 0.3, our Joint-FCN approach outper-
forms the others. The best STOI score is 0.19 higher when
T60 is 0.3, around 0.28 higher then when T60 ia 0.6 and 0.9.
We also observed that our Joint LSTM outperforms the base-
line approaches by 0.07 in PESQ score when T60 is 0.6, and
0.06 higher when T60 at 0.9 compared to cIRM. Compared
to the mixture, the PESQ score of our joint FCN increases by
roughly 0.5 when T60 is 0.3 and even higher at the other two
cases. Overall, our joint learning approaches perform better
as T60 increases, which is a great sign to the dereverberation
area since most of the time the approach will get worse re-
sults when T60 increases. More noticeably, the results reveal
that frequency-domain processing often outperforms T-F do-
main processing. Indicating that this form of dereverberation
is promising.

6. CONCLUSION

In this paper, we proposed a deep learning approach to extract
frequency information of RIRs out solely from frequency in-
formation of reverberant speech. This approach manages to
extract RIR frequency information and enhance the reverber-
ant speech. This approach enhances reverberant speech in
complex domain. Our approach deviates from recent meth-
ods by processing in the frequency domain. In addition, the
joint deep neural network method by adding predicted late in-
formation to the network helps to improve the direct sound
plus early reflection that is hard to predict directly. In the fu-
ture, we would like to address non-stationary (e.g. moving)
speakers.
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