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ABSTRACT

Reverberation time, T60, directly influences the amount of re-
verberation in a signal, and its direct estimation may help with
dereverberation. Traditionally, T60 estimation has been done
using signal processing or probabilistic approaches, until re-
cently where deep-learning approaches have been developed.
Unfortunately, the appropriate loss function for training the
network has not been adequately determined. In this paper,
we propose a composite classification- and regression-based
cost function for training a deep neural network that predicts
T60 for a variety of reverberant signals. We investigate pure-
classification, pure-regression, and combined classification-
regression based loss functions, where we additionally incor-
porate computational measures of success. Our results re-
veal that our composite loss function leads to the best perfor-
mance as compared to other loss functions and comparison
approaches. We also show that this combined loss function
helps with generalization.

Index Terms— T60 estimation, reverberation time esti-
mation, deep neural networks, loss function

1. INTRODUCTION

Reverberation is a natural phenomenon that occurs when
sounds from a source reflect off of different surfaces before
it reaches a microphone or person’s ears. Reverberation has
been shown to be costly to many speech-based applications,
e.g. speech enhancement [1, 2], automatic speech recogni-
tion [3, 4], and speaker localization [5, 6], to name a few.
This occurs because the reverberation may cause a signal to
smear across time and frequency.

The amount of reverberation influences descriptors like
T60 and the direct speech to reverberation ratio (DRR). DRR
is a logarithmic energy ratio between the direct and rever-
berant components of a signal, where higher numbers sig-
nify less reverberation. T60 tells how long it takes a given
signal to decay by 60 dB. In this case, higher T60 (or re-
verberation) times indicate more reverberation. Reasonable
estimates of these two parameters convey meaningful infor-
mation about the room environment, and they also disclose
information about the corresponding room impulse response.

Hence, adequately estimating them may help with auditory
scene analysis [7] and dereverberation [8]. This paper focuses
on T60 estimation.

T60 estimation has traditionally been accomplished using
signal processing techniques. In [9], the author compares
two different methods for extracting room acoustic parame-
ters from reverberated speech. The first method uses statis-
tical machine learning. The second method produces a max-
imum likelihood estimate on decay phases at the end of the
utterances. The second method is also extended by estimat-
ing parameters related to the balance of early and late energies
in the impulse response. The authors in [10] propose an algo-
rithm for blind estimation of reverberation in speech signals
by applying a spectral decomposition on reverberation sig-
nals. Partial reverberation time estimates are determined in
all signal subbands.

Like many other problems, T60 estimation is now being
investigated using deep neural networks (DNN)s. In [11], the
authors propose a multi-layer perception (MLP) approach to
T60 estimation. More specifically, they extract features us-
ing a Gabor filterbank, and supply the features as inputs to
a MLP. The input consists of the Gabor response, which has
nine frames of the Gabor feature vector. This is a frame-level
prediction approach, where the single T60 for the utterance is
predicted at each time frame. A decision rule is then used to
generate a utterance-level estimate from the frame-level esti-
mates. An updated version of this approach is presented in
[12], where this approach jointly estimates reverberation time
and DRR. In [13], the authors propose a fully-connected con-
volutional neural network (CNN), where the output of each
layer are downsampled, until the last layer outputs a single
value, which estimates T60. Hence, a single prediction is
made at the utterance level. This approach is extended in [14],
where the CNN is modified and data is augmented to further
improve performance.

The above approaches mostly use the mean-square er-
ror (MSE) as the loss function to estimate T60. Since other
speech-related tasks have shown that the MSE is sub-optimal,
alternative loss functions for reverberation time estimation
should be explored. Likewise, work in ASR [15] and speech
assessment [16] have shown that treating speech-tasks as
classification, rather than regression problems is beneficial.
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Fig. 1. (A) Data preprocessing block. (B) Shared feature
extraction block. (C) Composite T60 estimation block.

In this paper, we propose a composite classification and
regression based loss function for estimating reverberation
time for a variety of seen and unseen reverberant conditions.
In particular, we explore a multi-task framework that uses
magnitude and phase features of the signals, incorporates
an additional convolutional-based feature extraction stage,
and generates predictions using regression, classification,
and classification-based regression training targets. Stan-
dard classification (e.g. cross entropy) and regression (MSE)
loss functions are also combined with standard measures of
performance (e.g. mean-absolute error, Pearson’s correla-
tion coefficient, and Spearman’s rank correlation) to form a
composite loss function.

2. PROPOSED APPROACH

The proposed approach for estimating T60 directly from a re-
verberant signal is shown in Fig. 1. The approach performs
data preprocessing, shared feature extraction, and composite
T60 estimation.

2.1. Data pre-processing

Reverberant speech, x(t), can be generated by convolving
anechoic speech, s(t), with a room impulse response (RIR)

x(t) = s(t) ∗ h(t) (1)

where * denotes convolution and h(t) is the RIR. Given a
reverberant speech signal in the time domain, the data pre-
processing block (Fig.1A) computes the short-time Fourier
transform (STFT) of the signal and returns the log-magnitude
and phase response, which are both two-dimensional matri-
ces. From the phase information, we further compute the sin θ
and cos θ instead of using phase directly, where θ is the phase
angle of the STFT matrix. This is done since prior studies
have shown that this phase information is useful for deep-
learning based speech problems [17, 18, 19, 20]. The features
are subsequently concatenated along time to form a combined
feature vector. We then normalize the feature vector so that it
has zero mean and unit variance for each frequency channel.

2.2. Feature Extraction and T60 estimation

The feature extraction network structure we propose is de-
picted in Fig.1B. The pre-processed input matrix passes to a
shared feature extractor, which consists of six 2D convolu-
tional layers (Conv) with rectified linear unit (ReLU) activa-
tion functions. Batch normalization (BN) is applied after each
convolutional layer [21]. The number of kernel filters is set as
follows: 16 kernel filters for the first two layers, 32 kernel fil-
ters for the middle two layers and 64 kernel filters for the last
two layers. Max pooling is performed after the first two Conv
layers, the middle two Conv layers, and between the last two
Conv layers. The kernel sizes of the maxpooling layers are set
to 2 × 2. Note that this architecture is based on [16], since it
performed well for a similar but different speech assessment
task. We did, however, make modifications as discussed next.

Next, the output from the shared feature extractor is si-
multaneously applied to two related tasks (Fig.1C). The left
portion of the network is for the regression task, which di-
rectly estimates T60. It passes the inputted feature to one
Conv layer with a ReLU activation function, and follows with
a 2D average pooling layer that outputs a scalar value. 128
kernel filters are used, where the kernel size is 3 × 3. One
fully connected layer (FC) with batch normalization follows,
where a leaky ReLU activation function is used. Its negative
slope is set to 0.1. Finally one more FC layer is applied with
a ReLU activation function as the final layer for the T60 esti-
mation. The ReLU activation ensures that the estimated T60
is positive valued.

The right portion of the network shown in Fig.1C is used
for the classification task, which we further decompose into
two sub-tasks. The first sub-task aims to predict a one-hot
vector, and results in the predicted probabilities of each T60
class,Cout. The second sub-task generates a regression-based
output from the predicted probabilities. More specifically,
we compute the weighted sum between a vector of the rever-
beration times and the classification probabilities Cout. This
classification-based regressed estimate is computed as shown
in Eq. (2).

CRegT60
=

H∑
i=1

(
Ci

out × Ti
)
, i = 1, · · · , H (2)

where × denotes point-wise multiplication, H denotes the
number of classes, Ti is the T60 time of the i-th class,
Ci

out is the estimated class-probability for the i-th class,
and CRegT60

denotes the classification-based regression out-
put for the current signal. For this second task, we pass the
extracted feature from the shared feature extractor to the clas-
sification part of network, which consists of two FC layers
with leaky ReLU and softmax activation functions are applied
to the last layer. Batch normalization is also applied.
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2.3. Cost Function

Four cost functions are proposed and used to train the above
network. First, we propose to combine the cross-entropy loss
Lcel from the classification sub-task and mean-squared error
(MSE) Lreg from the regression part, to update the weight
matrices. In other words, we do not generate a classification-
based regression output. The loss function for this approach
is shown below.

LA
total = β ∗ Lcel + (1− β) ∗ Lreg (3)

where β ∈ [0, 1] controls the weight between the cross-
entropy and regression based loss functions. This loss func-
tion is denoted as LA

total.
Since we separate the classification task into two sub-

tasks, we also include both the cross-entropy loss, Lcel, and
the classification-based regression loss, Lcreg , into the clas-
sification and total loss functions. The MSE is used for the
classification-based regression loss, Lcreg .

LB
total =β ∗ (α ∗ Lcel + (1− α) ∗ Lcreg)+

(1− β) ∗ Lreg

(4)

Here α ∈ [0, 1] controls the weight between the cross-entropy
and classification-based regression loss functions of the clas-
sification sub-task. We denote this loss function as LB

total.
From previous research [22, 23], evaluation scores such

as the scale-invariant source-to-noise ratio (SI-SNR) are used
within the cost functions to update the weight matrices for
different speech enhancement tasks. In a similar fashion, we
propose to add Pearson’s correlation coefficient (PCC) and
Spearman’s rank correlation coefficient (SRCC) as additional
components of our composite cost function. This loss func-
tion is denoted as LC

total, and is shown below

LC
total = LB

total − |ρreg| − |ηreg| − |ρcls| − |ηcls|, (5)

where ρreg and ηreg denote the PCC and SRCC scores for the
regression task, and ρcls and ηcls denote the PCC and SRCC
scores for classification-based regression output. Here, | · |
denotes absolute value. Since we want to minimize total loss,
we hence want to maximize the absolute value of each corre-
lation in order to ensure a high correlation between the target
and estimates.

Our fourth loss function incorporates the mean absolute
error (MAE) from the regression part, to determine if this ad-
ditional term impacts performance, since it is a standard met-
ric for reverberation time estimation.

LD
total =β ∗ (α ∗ Lcel + (1− α) ∗ (Lcreg +Mcreg))

+ (1− β) ∗ (Lreg +Mreg)

− |ρreg| − |ηreg| − |ρcls| − |ηcls|
(6)

whereMcreg denotes the MAE of classification-based regres-
sion subnet andMreg denotes the MAE of the regression sub-
net.

All the above models with different cost functions share
the same set of parameters: batch size is 50, Adam optimiza-
tion is applied, and the learning rate is set to 0.001. All the
models are trained using the standard back propagation algo-
rithm for 100 epochs. Note that we experimented with differ-
ent cost functions (e.g. different combination of β and α), but
we empirically determined the best combination of β and α
for the different approaches.

3. EXPERIMENTS

3.1. Experimental Setup

The proposed system is evaluated using the TIMIT cor-
pus [24], which contains various native English speakers
from different regions of the United States. In our experi-
ments, we randomly select 5000, 500, and 500 utterances to
construct our training, validation and testing datasets. All
6000 utterances are downsampled to 8kHz. We simulate
RIRs from 11 different rooms using the imaging method
[25], with dimensions of: 9m× 8m× 7m, 10m× 7m× 3m,
6m× 6m× 10m, 8m× 10m× 4m, 7m× 7m× 8m, 7m ×
9m × 5m, 8m× 8m× 10m, 10m× 10m× 8m, 8m × 8m
× 6m, 7m× 8m× 6m and 9m× 9m× 10m. The distance
between the receiver and the speaker is set to 1m in all cases.
We select 13 different reverberation times from 0.3s to 1.5s,
with steps of 0.1s. We simulated 500 different RIRs for each
T60 in the first 10 rooms that are used to generate the training
set, another 100 RIRs for each T60 in the same room settings
to separately generate the validation and seen room testing
sets, and 500 different RIRs for each T60 in the 11th room
for unseen testing. We convolve each RIR with one utterance
for each T60. As a result, there are 5000×13(T60s) = 65,000
reverberant utterances in the training set; 500×13(T60s) =
6,500 reverberant utterances in the validation, seen and un-
seen testing sets.

While the length of the h(t) can vary due to T60, we pad
zeros to h(t) before the convolution, which makes the length
of h(t) the same. Also, we cut all the clean signals to 6 sec-
onds, and then convolve the clean signals with the padded
RIRs.

The short-time Fourier transform (STFT) is computed
using a 480-sample Hamming window, 512-point fast Fourier
transform (FFT), and 75% overlap between successive frames.

4. EVALUATION

4.1. Comparison Approach

In our experiments, we compare our proposed system with
two baseline approaches: T60 estimation using convolutional
neural network (CNN) [14] and T60 estimation based on
spectro-temporal modulation filtering [11]. Note that data
augmentation is not applied when training the CNN approach
from [14]. The feature we use for the CNN approach is the
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Table 1. Seen Rooms Comparison with different approaches. Ltotal(·) denotes the loss function used for proposed system
MSE MAE ρ η

Reg Cls Reg Cls Reg Cls Reg Cls
MLP [11] 0.075 − 0.211 − 0.783 − 0.788 −
CNN [14] 0.044 − 0.196 − 0.931 − 0.940 −

LA
total(β = 0) 0.057 0.145 0.208 0.329 0.929 -0.128 0.939 -0.107

LA
total(β = 0.4) 0.270 0.033 0.425 0.147 -0.211 0.927 -0.165 0.940
LA
total(β = 1) 0.448 0.198 0.566 0.365 0.092 0.120 0.101 -0.013

LB
total(β = 0.3, α = 0.1) 0.176 0.135 0.347 0.318 0.781 0.573 0.819 0.635

LC
total(β = 0.4, α = 0.2) 0.131 0.022 0.289 0.116 0.609 0.955 0.606 0.973
LD
total(β = 0.3, α = 0) 0.098 0.093 0.270 0.228 0.771 0.808 0.800 0.816

LD
total(β = 0.9, α = 0.1) 0.120 0.057 0.290 0.204 0.955 0.963 0.958 0.968
LD
total(β = 0.3, α = 1) 0.284 0.250 0.435 0.412 -0.013 0.428 0.003 0.430

Table 2. Unseen Room Comparison with different approaches. Ltotal(·) denotes the loss function used for proposed system
MSE MAE ρ η

Reg Cls Reg Cls Reg Cls Reg Cls
MLP [11] 0.092 − 0.239 − 0.715 − 0.723 −
CNN [14] 0.096 − 0.212 − 0.856 − 0.860 −

LA
total(β = 0) 0.047 0.145 0.189 0.329 0.942 -0.098 0.953 -0.084

LA
total(β = 0.4) 0.298 0.056 0.449 0.171 -0.042 0.919 -0.198 0.942
LA
total(β = 1) 0.467 0.201 0.577 0.368 0.040 0.069 0.050 -0.070

LB
total(β = 0.3, α = 0.1) 0.174 0.136 0.345 0.319 0.830 0.476 0.872 0.546

LC
total(β = 0.4, α = 0.2) 0.117 0.023 0.273 0.114 0.532 0.968 0.525 0.984
LD
total(β = 0.3, α = 0) 0.092 0.089 0.261 0.221 0.845 0.814 0.866 0.837

LD
total(β = 0.9, α = 0.1) 0.102 0.045 0.263 0.180 0.962 0.973 0.962 0.977
LD
total(β = 0.3, α = 1) 0.295 0.242 0.444 0.405 0.219 0.601 0.229 0.622

log-mel spectrogram. The architecture of the CNN matches
what is reported in their paper. For the spectro-temporal
modulation approach, the feature is extracted by using Gabor
2D filters. The features are then inputted into a 3-layer MLP
[11], which is done in the original approach.

To evaluate the performance of the proposed system com-
pared with comparison approaches, the MSE, MAE, PCC (ρ)
and SRCC (η) are calculated. The MSE and MAE have no
specific range, but for all cases, lower values indicate better
performance. The PCC and SRCC have ranges from -1 to 1,
where scores closer to 1 indicate better results.

Table 1 lists all scores for different approaches in seen
rooms. The best performance is shown in bold for each
metric. Comparing our proposed system with the regres-
sion only baseline models (MLP and CNN), the CNN has
a better performance on regression task in terms of MSE
and MAE as shown in the first and third columns of table
1. However, LC

total(β = 0.4, α = 0.2) (composite with-
out MAE) gives the best performance in terms of MSE and
MAE across both regression and classification-based subnets.
LD
total(β = 0.9, α = 0.1) (composite with MAE) gives the

best performance in terms of PCC across both regression and
classification subnets, and it also performs well according to
SRCC. For SRCC, LC

total shows the best performance overall.
Overall, the best performing proposed approach clearly out-
performs MLP and CNN approaches across all metrics. This
also occurs when the objective measures (MAE, PCC and

SRCC) are not included in the cost function LA
total, indicating

that the classification and regression subnets regularize each
other to improve performance.

Table 2 lists all comparison scores for different ap-
proaches in the unseen room. The pure regression model
in LA

total(β = 0) shows the best performance in terms of
MSE and MAE for the regression task in the first and third
columns of the table. In terms of MSE and MAE, LC

total

(composite without MAE) performs the best overall accord-
ing to MSE and MAE. LD

total (composite with MAE) with
β = 0.9, α = 0.1 performs best on both regression and
classification-based regression subnets according to PCC.
Overall, our proposed system outperforms CNN and MLP in
terms of all scores in an unseen room, indicate its ability to
generalize.

5. CONCLUSION

In this paper, we propose a composite classification and
regression-based cost function for training a deep neural
network that predicts T60. Our approach is different from
recent methods and benefits from the two tasks. The results
shows that the tradeoff between weighting classification ver-
sus regression tasks does influence results. Our approach also
benefits from dividing the classification tasks into two sub-
tasks. In the future, we would like to address real reverberant
speech, and also determine better ways to tune α and β.
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