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ABSTRACT
In contemporary society, voice-controlled devices, such as smart-
phones and home assistants, have become pervasive due to their
advanced capabilities and functionality. The always-on nature of
their microphones offers users the convenience of readily accessing
these devices. However, recent research and events have revealed
that such voice-controlled devices are prone to various forms of
malicious attacks, hence making it a growing concern for both
users and researchers to safeguard against such attacks. Despite the
numerous studies that have investigated adversarial attacks and
privacy preservation for images, a conclusive study of this nature
has not been conducted for the audio domain. Therefore, this pa-
per aims to examine existing approaches for privacy-preserving
and privacy-attacking strategies for audio and speech. To achieve
this goal, we classify the attack and defense scenarios into sev-
eral categories and provide detailed analysis of each approach. We
also interpret the dissimilarities between the various approaches,
highlight their contributions, and examine their limitations. Our
investigation reveals that voice-controlled devices based on neural
networks are inherently susceptible to specific types of attacks.
Although it is possible to enhance the robustness of such models to
certain forms of attack, more sophisticated approaches are required
to comprehensively safeguard user privacy.
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1 INTRODUCTION
In recent years, the prevalence of voice-controlled devices in users’
homes has increased significantly. As of 2019, there were over 3
billion voice assistants in use1, and this number is projected to grow
to 8.4 billion by 2024. Many Internet-of-Things (IoT) systems now
utilize voice control, including products such as Google Home, Ama-
zon Echo, and Apple HomePod, which allow users to control their
smart home devices using voice commands. With these devices,
users can perform tasks like making online purchases, unlocking
doors, adjusting room temperature, and modifying home security
systems, all through spoken interactions. Smartphones are also
ubiquitous, with over 80% of the world’s population owning one.
As of today, there are approximately 6.37 billion smartphones in
use worldwide2, and many people also use other voice-enabled
1https://voicebot.ai/2019/12/31/the-decade-of-voice-assistant-revolution/
2https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
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devices such as smartwatches and earphones. In 2020, over 444.7
million wearable units were shipped globally3, many of which in-
clude voice-assistive technology like Apple Siri, Microsoft Cortana,
and Google Now.

The proliferation of voice-controlled devices has enabled users
to interact with them using voice commands, which has improved
their convenience and accessibility. However, concerns about secu-
rity and privacy have emerged, with more than 41% of voice assis-
tant users expressing privacy concerns, according to recent research
from Microsoft4. Malicious attacks [5, 34] on voice-controlled de-
vices can lead to serious security risks, including unlocking a per-
son’s home, stealing their credit card information, or triggering un-
intended purchases. For example, a 2017 Burger King commercial5
inadvertently triggered Google Home smart speakers and Android
phones to read out Wikipedia information about its products, by
saying "OK, Google. What is the Whopper burger?" in the ad. Sub-
sequently, an attacker edited Wikipedia to describe the Whopper
as the "worst hamburger product" and another added cyanide to
the list of ingredients. Although this attack was relatively harmless,
false positives of this nature can have serious consequences. In an-
other instance, a TV anchor’s joke 6 caused Amazon Echo devices
in users’ homes to try to order a $160 dollhouse, which raised con-
cerns about unintended purchases. These incidents demonstrate the
need for greater security measures to safeguard voice-controlled
devices against malicious attacks.

Research into privacy-attacking and privacy-defending methods
has been ongoing for many years in various domains other than
audio. For instance, in the image domain, a survey by Serban et al.
[122] demonstrates how attackers can produce adversarial examples
to deceive object recognition models and cause them to misclassify
objects in an image. Additionally, it outlines how defenders can
protect the system from such attacks or redesign the model. In
the natural language processing (NLP) domain, Zhang et al. [159]
conduct a survey of attacks and defenses on text data. Melis et al.
[96] describe how to mislead the iCub robot vision system with
adversarial examples that trick the classification process. This study
also proposes a defense mechanism to enhance the model’s security
against adversarial examples. More recently, the paper from Li et al.
[84] investigates privacy threats posed by large language models,
such as OpenAI’s ChatGPT, within application-integrated APIs
like New Bing. The work highlights the potential for more severe

3https://www.statista.com/statistics/437871/wearables-worldwide-shipments/
4https://https://techcrunch.com/2019/04/24/41-of-voice-assistant-users-have-
concerns-about-trust-and-privacy-report-finds/
5https://www.bbc.com/news/technology-39589013
6https://www.cbsnews.com/news/tv-news-anchors-report-accidentally-sets-off-
viewers-amazons-echo-dots/
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privacy risks than previously seen, and supports these claims with
extensive experimentation and discussion on privacy implications.

With the rise in the number of voice-controlled device users,
safeguarding audio privacy has become a major concern. It is im-
portant that users, researchers and the general public are aware
of the attack and defense mechanisms that exist today. Therefore,
this paper presents a comprehensive survey of recent techniques
that aim to protect or attack speech and audio privacy. Our focus is
on four main attack categories, including impersonation attacks,
operating system attacks, ultrasonic attacks, and adversarial attacks.
In addition, we classify defense mechanisms as either detect-only
or complete defense. Notably, voice-controlled system stages are
susceptible to different types of attacks and defenses.

The subsequent parts of this paper are structured as follows:
Firstly, we will provide an overview of the threat model and taxon-
omy, and define important terminology related to privacy-protecting
and privacy-attacking strategies. Next, we will delve into each at-
tack and defense mechanism, discussing them in detail. Lastly, we
will conclude the paper with a discussion on the topic and suggest
potential directions for future research.

2 THE THREAT MODEL
The basic flow of a voice-controlled system is illustrated in Fig. 1.
Speech is first captured using a microphone and then converted into
a digital signal before being provided to a deep learning model. The
model performs automatic speech recognition and translates the
signal into a computer-readable command, which is then executed.
The attack and defense strategies can be implemented at any point
in this process, and we have categorized them accordingly.

We first define the threat model that describes the goal of the
attacker and defender. We assumemalicious attackers are interested
in attacking a voice-controlled device of a target user. The attacker
can target the device at any stage during the user’s interaction,
from when the user starts speaking to when the device executes the
command. The goal of the attacker, also known as the adversary,
is to confuse the original voice-controlled system and make the
system to execute a malicious command without the target user
noticing. The defenders are aware of possible attacks, so they try to
either detect the incoming attack or reinforce the system to disable
the attack. The basic assumption of attackers and defenders can be
refined in several categories as follows:

• Attacker’s Knowledge: This category specifies how much
an attacker knows about the system.White-box attacks as-
sume the attacker has full knowledge of the target system, in-
cluding its setup and parameters. Attackers can replicate the
model setup and parameters. In contrast, black-box attacks
assume that the attacker does not possess any information
about the system, and must develop a general attack that
can affect all types of systems.

• Attacker’s Goal: The goal of the attacker depends on the
type of attack. A targeted attack, also known as a source-
targeted attack [107], aims to misclassify the input into a
specific label or category. For instance, in the context of
speaker verification, the attacker may want the system to
recognize their voice as belonging to the target user. An
untargeted attack, on the other hand, does not require a

Figure 1: The flowpath of a typically voice-controlled system.

specific label output. The adversary’s aim is to misclassify
the input into any incorrect class.

• Physical/Logical Attacks: A logical attack involves the
attacker injecting perturbations into the input speech in a
simulated manner, such as through additive manipulation in
software. This type of attack poses a limited real-world threat
as the perturbation cannot play over-the-air. In contrast, a
physical attack occurs away from the device and allows the
perturbation to play over-the-air, which means that these
attackers must consider room acoustics.

• Input specific/Universal Attacks: An input specific at-
tack is dependent on the audio and targets each audio input
specifically. Recently, universal attacks have emerged [99],
whereby a single attack or perturbation can be applied to
all inputs to the voice-controlled system. These attacks are
potent because the attacker does not need any prior infor-
mation about what the user is saying, and the attack occurs
in real-time.

• Defender’s Goal: From the defender’s perspective, defense
mechanisms can be classified into detection defenses or com-
plete defenses. A detection defense entails developing a clas-
sifier that detects whether the input has been modified or
not, alerting the user if the input has been modified. On the
other hand, a complete defense not only detects the attack
but also disables the attack by reducing its effectiveness.

3 CATEGORIES OF ATTACKS
In this section, we will examine recent techniques used to com-
promise privacy. The attacks can occur at any stage depicted in
Fig 1. For instance, during the human voice stage, individuals can
deceive the system by impersonating someone else’s speech. At
the voice-driven software stage, hackers can breach the operating
system and commandeer the software to accept their orders. Dur-
ing the signal-to-digital converter stage, attackers can employ an
ultrasonic signal to conceal their malicious commands. Finally, in
the deep learning stage, individuals can employ well-crafted speech
adversarial examples to deceive the deep learning model. A compre-
hensive list of papers on this topic can be found in Table 1. We will
also provide an interpretation of these algorithms and discuss the
advantages and disadvantages of each technique. The performance
metrics presented in this section are based on the findings outlined
in the original publications.

At the initial stage of voice-controlled execution, an attacker may
carry out an impersonation spoofing attack on the voice-controlled
system. This type of attack can be executed by employing a re-
play system [26], a synthetic speech system, or a converted speech

2
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Category Type paper

Privacy-attacking

Impersonation Attack [90][58][19][136][157][121] [26][44][12][110][142][126][129][95][133][67] [137][132][15][41]
[57][16][65][98] [25][124][40]

Operating System Attack [61] [34]
Ultrasonic Attack [115] [158] [125]

Adversarial Example [154] [112] [23] [91] [131] [71] [120] [28] [103] [119] [148] [85] [60] [7] [35] [8] [2] [78]
[1] [52] [138] [130] [86] [94] [139] [118] [74] [47] [103] [147] [46] [149] [75] [3] [89] [160] [53]

Privacy-defending Detection Only
[73] [146] [135][77][30][21][17][80][151][6][88][143][32][24][45][156][9][66][68][63]
[115] [83][144][134][14][79][87][20][141][29][64][69][150][49][26][116][33][114]
[113] [62] [42] [59] [158]

Complete Defense [152][97][31][76][127][75][11][39] [37] [153][109][38] [158] [27] [93] [92]
Table 1: Paper list of privacy-attacking and privacy-defending.

system [140, 145]. By doing so, the attacker can prompt the voice-
controlled system to execute their desired command. We discuss
these attacks in section 3.1. In the second stage, the operating sys-
tem can be targeted, where attackers may take over the system and
force it to execute incorrect commands from the speaker [34, 61].
Additionally, the attacker may also gain access to the microphone
in this stage [10]. We describe these attacks in section 3.2. More
recent attacks focus on the third and fourth stages. In contrast to
the previous two stages, malicious actions in stage three and four
are more difficult to detect and resolve. In the third stage, attacks
typically utilize the non-linearity characteristic of the speech signal
[115, 125, 158]. See section 3.3 for more information.

The final stage in the system involves feeding the signal into
a deep learning model. In 2013, Szegedy discovered that certain
adversarial attacks [128], which had previously been effective in
other domains [50, 105, 106], could also be employed to target deep
learning models. Based on these findings, targeted audio adversarial
attacks [23] have been developed, which are particularly potent
because human listeners cannot distinguish between the real audio
and the adversarial example. Goodfellow argues that these adver-
sarial examples exist due to the excessive non-linearity present
in deep learning models [50]. Please refer to section 3.4 for more
information on deep-learning-based attacks.

3.1 Impersonation Attacks
Impersonation attacks, also referred to as spoofing attacks [135], are
the most fundamental type of attack on a voice-controlled system.
In such attacks, the attacker creates a voice command that resembles
the voice of the user of the smart voice assistant. Impersonation
attacks can be classified into three types: synthetic speech attacks,
converted speech attacks, and replayed speech attacks.

3.1.1 Replay attacks. The replay speech attack is the most common
form of attack. Attackers use recorded speech of the target user to
mimic their voice. For instance, the attacker can easily download
the user’s voice from their social media page 7. Alternatively, the
attacker can create a spam call that tricks the target user into saying
a particular word or phrase that they desire. They can then use the
recording of this phrase to launch an attack on the voice-controlled

7https://audioboom.com/

system 8. To execute a replay speech attack, the attacker must
obtain a large amount of speech data from the target user.

3.1.2 Synthetic speech attacks. Synthetic speech attacks use text-
to-speech synthesis (TTS) to create simulated human voice com-
mands that sound as if they originated from the target user [12,
44, 95, 110, 126, 129, 142]. Traditional TTS techniques primarily
focus on concatenative synthesis [19, 58] and parametric speech
synthesis [136, 157]. Once the attacker obtains enough recordings,
they can extract the victim’s acoustic model [90]. By using the
acoustic model, the attacker can reconstruct any desired commands
through speech synthesis techniques9. However, the resulting au-
dio clips often sound artificial and unnatural due to the noise and
reverberation present in the recorded speech.

Modern TTS methods use conventional source-filter vocoders
[70, 100] or aWaveNet-based vocoder [104] to producemore natural-
sounding speech. A vocoder is an electronic device or software that
is used to analyze and synthesize speech or other sounds. It works
by breaking down the incoming sound signal into its spectral com-
ponents and then re-synthesizing it using a carrier signal to produce
an output that sounds like the original sound but with different
characteristics. In Arık et al. [12], a real-time text-to-speech system
called ‘Deep Voice’ is proposed that uses a WaveNet-based vocoder.
The detailed model structure is shown in Fig 2. In this system, the
text data is first converted into phonetic information, which is then
fed into a segmentation model that identifies where each phoneme
begins and ends. The duration model predicts the duration of each
phoneme, and the fundamental frequency module predicts whether
a phoneme is voiced or not. The audio synthesis model combines
the outputs from each module and the vocoder to generate a syn-
thesized audio signal. This audio can be used for a synthetic speech
attack.

More recent approaches focus on end-to-end TTS conversion, as
demonstrated in Ping et al. [110]. End-to-end TTS uses an encoder
to convert text into an internal latent representation and a decoder
decodes this representation into an audio spectrogram. A vocoder
then transforms the predicted features into a speech signal. Similar
architectures are also found in Tactron [142] and Tacotron 2 [124].
End-to-end TTS models differ from traditional methods, where
8https://www.varnumlaw.com/newsroom-publications-recording-conversations-
with-your-cellphone-with-great-power-comes-potential
9https://www.pro-tools-expert.com/home-page/2016/11/16/adobe-voco-should-we-
be-afraid

3
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Attack Name Attack Type Attacker
Knowledge Attacker Goal Physical/Logical

Attack
Attack
Generality

Replayed speech[73] Impersonation Attack Black Box Targeted Physical/Logical Specific
Synthetic speech[146] Impersonation Attack Black Box Targeted Physical/Logical Specific
Converted speech[135] Impersonation Attack Black Box Targeted Physical/Logical Specific
A11y attack[61] Operating System Attack White Box Targeted Physical/Logical Specific
GVS attack[34] Operating System Attack White Box Targeted Physical Specific
Dophin attack[158] Ultrasonic Attack White Box Targeted Physical Specific
Inaudible attack[115] Ultrasonic Attack White Box Targeted Physical Specific
C&W attack [23] Adversarial Example White Box Targeted Logical Specific
CommanderSong attack[154] Adversarial Example White Box Targeted Physical/Logical Specific
Imperceptible attack[112] Adversarial Example White Box Targeted Physical/Logical Specific
Robust physical attack[148] Adversarial Example White Box Targeted Physical Specific
Black box adversarial attack[131] Adversarial Example Black Box Targeted Logical Specific
Unviersal audio attack[103] Adversarial Example White Box Untargeted Logical Universal

Table 2: Threat model of representative privacy-attacking techniques.

Figure 2: Model Structure of Deep Voice from Baidu Inc. [12]

with traditional approaches each module is trained separately and
each component requires prior knowledge about the text to make
speech synthesis possible.

The synthetic speech attack is considered to be a black-box attack.
The attacker does not need any information or knowledge from
the user. However, this type of attack may be disabled if the voice-
controlled system has a speaker verification (SV) system that can
detect if the speech is from the original user or not.

3.1.3 Converted speech attack. Converted speech attacks are simi-
lar to synthetic speech attacks in that they aim to generate speech
that mimics the target user’s voice. However, converted speech
attacks differ in that they use voice conversion (VC) techniques
to make the resulting speech sound like that of the target user
[133]. Many techniques for performing VC have been proposed
in recent years. In multiple studies [67, 132, 137], the authors use
Gaussian-mixture models (GMMs) within the VC system to capture
the statistical properties of the acoustic features for both source
and target speakers. More recent approaches use neural networks
[16, 57]. An overview of a VC system can be found in Mohammadi
et al. [98]. VC systems typically use an encoder-decoder architec-
ture, similar to that used in text-to-speech systems. For example,
Jia et al. [65] proposed a VC system that generates speech for a

Figure 3: Model Structure of Google Voice Conversion system
[65]

specific speaker using only five seconds of their speech. Fig 3 shows
the model structure of the Google VC system. The system uses a
separately trained speaker encoder to extract the speaker encoding
from the speaker reference utterance, and then the encoder of the
synthesizer extracts the speaker-independent information from
the original speech to concatenate it with the speaker encoding
data to form a speaker-dependent audio representation. The audio
representation is then fed into the decoder to generate a log-mel
spectrogram feature, which is transformed into an audio utterance
by a vocoder, where the resulting audio sounds like the target user
and it contains a malicious command.

Converted speech attacks are considered the strongest type of
impersonation attack. Additionally, some VC systems can even
simulate the accent of the speaker, making it more difficult to detect
and defend against such attacks [15, 41].

3.2 Operating System Attacks
Operating system (OS) attacks, as the name implies, exploit vul-
nerabilities within the OS to execute attacks. These attacks are
self-triggered and more difficult to detect compared to imperson-
ation attacks. In this section, we discuss two notable OS attacks:
A11y attacks [61] and Google Voice Search (GVS) attacks [34].

3.2.1 A11y attacks. In 1998, the Rehabilitation Act of 197310 was
amended by the United States Congress with the objective of mak-
ing it easier for individuals with disabilities to use electronic devices

10https://www.section508.gov/Section-508-Of-The-Rehabilitation-Act
4
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and information technology. As a result, recent operating system de-
velopers have integrated various accessibility features, such as voice
commands, speech recognizers, and on-screen keyboards, among
others, into their OS. 111213 However, these accessibility technolo-
gies have also brought security concerns. In Jang et al. [61], the
author introduced malware that can be used to exploit commonly-
used operating systems. In total, Jang presented 12 different OS
attack approaches that leverage different accessibility tools. This
include Windows attacks: 1. privilege escalation through Speech
Recognition, 2. privilege escalation with Explorer.exe, 3. stealing
passwords using Password Eye and a screenshot, 4. stealing sudoer
passwords from authentication dialogsm; Ubuntu Linux attacks:
5. bypassing the security boundaries of Ubuntu; IOS attacks: 6. by-
passing passcode lock using Siri, 7. bypassing the iOS sandbox,
8. privilege escalation with remote view, 9. bypassing password
protection on iOS; and Android attacks: 10. bypass Touchless Con-
trol’s voice authentication, 11. bypassing Android sandboxing, and
12. keylogger on Android. In this section, we will discuss three
speech- and audio-related approaches that are used in voice-based
attacks.

In the case of Windows OS, attackers can take advantage of
the speech recognition accessibility feature to obtain higher privi-
leges. The speech recognition system in Windows always grants
administrative privileges at a high integrity level (High IL). The
attack scenario is illustrated in Fig 4. Firstly, the attacker uses Cre-
ateProcess() with the argument sapisvr.exe -SpeechUX to launch
the speech recognition accessibility tool. Then, the malware is em-
ployed to open the msconfig.exe application via CreateProcess().
By default, the application runs in High IL. Next, the attacker can
issue a voice command with the transcript "Tools, Page down, Com-
mand prompt, Launch" to open the command shell in Windows.
Finally, the opened command shell inherits the High IL, providing
command line access with administrative privileges, which allows
the attackers to execute any desired command.

Accessibility features in mobile operating systems, such as iOS
and Android, can also be exploited for attacks. In the case of iOS, an
attacker can use Siri to bypass the password lock screen and access
user-sensitive data or perform security-related commands, even
when the screen is locked 14. iOS allows Siri to bring user-sensitive
data or make security related commands even when the screen is
locked. Therefore, this can be done without any knowledge of the
user’s password. Similarly, for Android devices, an attacker can
use malware as a background service to record the user’s voice
constantly. When the phrase "OK Google Now" is detected, the
attacker can perform a replay speech attack using the device’s
microphone. Following this, the attacker can use a synthetic speech
attack and TTS speech commands to deceive the Google Now based
voice-controlled system.

3.2.2 Google Voice Search (GVS) attack. In Diao et al. [34], the
author generated malware using a zero-permission Android ap-
plication called VoicEmployer to attack the Android built-in voice
assistant tool Google Voice Search.
11https://www.google.com/sites/accessibility.html
12https://www.microsoft.com/en-us/accessibility/
13https://www.apple.com/accessibility/
14https://www.businessinsider.com/password-security-flaw-in-ios-7-lets-siri-
control-your-iphone-2013-9

Figure 4: Windows A11y attack using speech recognition
commander accessibility tool [61]

Figure 5: GVS attack using VoicEmployer malware [34]

Based on Diao’s research, Google voice search has two differ-
ent modes: voice dialer mode and velvet mode. The author shows
that a third-party app using the Bluetooth module can pass an AC-
TION_VOICE_COMMAND based intent to the Android operating
system and trigger the voice dialer mode of Google Voice Search
even though the device is locked.

Fig 5 shows the inter-application communication of the GVS
attack. The malware VoicEmployer first uses the speaker in the de-
vice to produce the attack audio that activates Google voice search
in the voice dialer mode. VoicEmployer then continuously analyzes
the environment and places the attack, if the user is not nearby
or sleeping. The malware then places a low sound impersonation
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attack lower than 55dB so that the user cannot notice the attack
[102].

3.3 Ultrasonic Attack
The upper bound frequency of human hearing is 20 kHz, where
human speech often occurs at frequencies much lower than this.
As a result, most voice-controlled systems use low-pass filters to
remove signal components that occur above 20 kHz [82], since the
spoken command will be contained in lower frequencies. Unfortu-
nately, attackers have developed sophisticated workarounds that
enable them to generate commands in frequency ranges above 20
kHz. In particular, ultrasonic sounds have frequencies higher than
20kHz, so they are inaudible to humans. With ultrasonic attacks,
the attackers leverage the non-linearity of the microphone and
speaker in the voice controlled system and use it to hide inaudible
commands in the ultrasonic frequency range, so that the target
device still receives the commands. These attacks can be really
damaging as they are difficult to detect. Next, we introduce two rep-
resentative ultrasonic attacks: dolphin attacks [158] and inaudible
voice command attacks [115].

3.3.1 Dolphin attacks. In Zhang et al. [158], the authors exploit
the non-linearity feature of a Micro Electro Mechanical System
(MEMS) microphone and an Electret Condenser microphone (ECM)
to generate inaudible ultrasonic signals that can carry malicious
commands. The experiment device setup is shown in Fig. 6 and the
detailed model architecture for a Dolphin attack is shown in Fig. 7.
The attack starts with voice command generation, which consists
of two parts: activation command generation and general control
command generation. Activation command generation refers to
the process of generating a specific phrase or word that triggers
the voice-controlled device to start listening for a user’s command.
General control commands refer to the voice commands given by
the user to control the device’s various functions. Since the activa-
tion command needs to pass a speaker verification process and the
general control command does not, the attacker generates the acti-
vation command by using a concatenative synthesis technique that
generates the wake words by concatenating different phonemes
from other recordings from the target user similar to the imperson-
ation attack we mentioned earlier. For example, the wake-up words
‘Hey Siri’ can be generated from “he is a boy”, “eat a cake”, “in the
city”, “read after me”. The general control command can be simply
generated by any state-of-art TTS system.

After the voice command is successfully generated, the author
uses amplitude modulation (AM) to generate the ultrasonic signal.
Amplitude modulation is a modulation technique used to transmit
information through a carrier wave by varying the amplitude of the
carrier wave in accordance with the information to be transmitted.
An ultrasonic carrier is chosen based on the modulation depth
𝑚 and carrier frequency 𝑓𝑐 . These two parameters are hardware
dependent and they decide the amplitude and frequency of the final
ultrasonic signal. After the ultrasonic signal has been generated, a
powerful transmitter then transmits the signal to the target voice-
controlled device. The result shows that the longest attack distance
with an inaudible signal is about 175cm.

Figure 6: Device setup for Dolphin attack [158]

Figure 7: Model Architecture for Dolphin attack [158]

3.3.2 Inaudible Voice Commands attack. In the dolphin attack, the
attack range has a limit of approximately 175cm. If we want to
increase the attack range by using a more powerful ultrasonic
transmitter, then audio leakage may occur that makes the signal
audible to the target user, e.g., part of the ultrasonic signal is leaked
into the human-audible frequency range. In Roy et al. [115], the
author proposes an approach that can place a long-range ultrasonic
attack, without ultrasonic leakage. This kind of attack is more
dangerous than the previous one [158] since the attack can occur
from outside of a person’s home.

To solve this problem, Roy et al. found that not only the mi-
crophone has the non-linearity feature, but the loudspeaker also
has similar characteristics. Therefore, the author utilizes the loud-
speakers non-linearity feature and formulates this question as an
optimization problem. This is done in order to hide the audible au-
dio leakage spectrum, 𝐿(𝑓 ), into the human hearing threshold𝑇 (𝑓 )
as Fig. 8 shows, so that human listener will not hear the signal. The
approach uses an ultrasonic loudspeaker array with 61 loudspeak-
ers, as shown in Fig 9. Each microphone helps to segment the input
signal into a small ultrasonic signal piece. The result shows that
the attack can be successfully placed when the loudspeaker is 12ft
away from the device. The author also proposes several detection-
based defense mechanisms, and these techniques are introduced in
section 4.1.

Ultrasonic attacks are strong but they also have drawbacks. These
attacks require specific ultrasonic transducers to produce the ultra-
sonic signal. Furthermore, for long-range attacks, a big and power-
ful ultrasonic speaker is needed, if you want to attack outside of
the target user’s home. Hence, the attacker needs to be close to the
device in order for this attack to occur.
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Figure 8: Main idea of Roy et al. [115] to minimize the gap
between the human hearing threshold and speaker leakage.

Figure 9: (a) Device setup in Roy et al. [115]. (b) The ultrasonic
microphone array for the attack.

3.4 Adversarial Attacks
Modern voice-controlled systems are often equipped with a state-
of-art automatic speech recognition (ASR) system, such as Deep
Speech [54], Lingvo [123], Kaldi [111], to name a few. These deep
learning based approaches have great performance on recognition
tasks with about 5% word error rate (WER). However, it has been
shown that DNN models have vulnerabilities, as is discussed in
Szegedy et al. [128]. Fig. 10 shows the basic idea of an adversarial
attack in both the image and audio domains. This type of attacks
aims to mis-classify the original label to a different label by adding
a certain perturbation to the input. For images, this may result in
the classifier incorrectly identifying the object in the image. For
speech recognition, the resulting audio signal may sound (and look
like) the original input, but the ASR system may transcribe the
audio incorrectly, where it is transcribed as a malicious command
of the attacker.

Cocaine Noodles [139] and Hidden Voice Command [22] are the
first two approaches that discuss the vulnerabilities associated with
automatic speech recognition. They found that the ASR systems are
highly reliant on acoustic features, such as Mel-frequency cepstral
coefficients (MFCCs). Using this feature, they successfully generate
adversarial examples that contain enough acoustic features that the
ASR system accepts it. However, these attack approaches do have
limitations. The output speech, after adversarial noise is added,
is not understandable, so the user may notice the attack and take
effective defense measures. Recent adversarial approaches, however,

Figure 10: Adversirial example in image and audio domain
Gong et al. [48].

successfully produce utterances that are still fully understandable
by humans, but that are mis-classified by state-of-art ASR systems.
In the following subsections, we introduce different adversarial
example approaches based on the threat model of attackers.

3.4.1 C&W attack. In 2018, Carlini and Wagner [23] first success-
fully placed an end-to-end targeted adversarial attack on the Deep-
speech ASR system [54]. They found that for any input 𝑥 , it is
possible to find a small 𝛿 to generate 𝑥 ′ where 𝑥 ′ = 𝑥 + 𝛿 so that 𝑥
and 𝑥 ′ sound nearly identical. However, when 𝑥 ′ is provided as the
input to the ASR system, i.e., 𝑓 (𝑥 ′), the ASR outputs 𝑦, which is a
malicious command.

In order to make 𝑥 and 𝑥 ′ sound similar, Carlini and Wagner use
the decibel (dB) as a distortion metric. The relative loudness of an
audio sample is calculated as:

𝑑𝐵(𝑥) = max
𝑖

20 · log10 (𝑥𝑖 ) (1)

The distortion level between the original waveform, 𝑥 , and the
added perturbation, 𝛿 , can be calculated as:

𝑑𝐵𝑥 (𝛿) = 𝑑𝐵(𝛿) − 𝑑𝐵(𝑥) (2)
The problem now can be formulated as the following optimization
problem:

minimize 𝑑𝐵𝑥 (𝛿)
such that 𝑓 (𝑥 + 𝛿) = 𝑡

𝑥 + 𝛿 ∈ [−𝑀,𝑀]
(3)

𝑀 here means the maximum representable value for the adversarial
example which can be accomplished by clipping. Here, 𝑡 is the
malicious command transcript, which is the target label the attacker
wants to achieve. Due to the non-linearity of the constraint 𝑓 (𝑥 +
𝛿) = 𝑡 , the optimization problem requires an additional loss term:

minimize𝑑𝐵𝑥 (𝛿) + 𝑐 · ℓ (𝑥 + 𝛿, 𝑡) (4)
Here ℓ (·) represents the additional loss term. Smaller values for
ℓ (𝑥 + 𝛿, 𝑡) indicate that the predicted transcript is closer to target
transcript. 𝑐 here helps to control the weights of the distribution
level and adversarial performance. In this paper, the author uses
the connectionist temporal classification (CTC) loss [51]. This is a
commonly used loss function in speech recognition tasks. A lower
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CTC loss indicates that the output transcription is closer to the
ground truth label. The final difficulty is that the system may fail
to converge when the inserted perturbation is too small. Therefore,
the author sets a constant 𝜏 and forces the system to converge
when 𝑑𝐵𝑥 (𝛿) ≤ 𝜏 . If the system successfully converges, 𝜏 can be
reduced iterating until no solution can be found. Therefore, the
final optimization problem can be described as:

minimize |𝛿 |22 + 𝑐 · ℓ (𝑥 + 𝛿, 𝑡)
such that 𝑑𝐵𝑥 (𝛿) ≤ 𝜏

(5)

By using the above method, the author reaches a 100% success
attack rate with a 99.9% similar adversarial example compared to
the original audio clip. Since this is a white box, non-universal,
logical access threat model, C&W attacks pose a limited threat to
voice-controlled systems.

3.4.2 Over-the-air attacks. In this section, we introduce some rep-
resentative audio adversarial over-the-air attacks. These attacks are
more dangerous than logical attacks, because they can attack the
target device physically and from a long distance. The representa-
tive publications are [112, 148, 154].

In Yuan et al. [154], the author proposes a white box attack that
generates adversarial music that contains a malicious command to
attack a Kaldi ASR system [111]. The attack can be either logical
(WAV-To-API, WTA), which is simulated digitally or physical (WAV-
AIR-API,WAA), which can be deployed through the air. A Kaldi ASR
system contains multiple components such as an acoustic model
and a language model. The acoustic model in it can be trained with
a DNN and it represents the probability between input features
and phonemes. The language model then represents the probability
distribution over the sequence of words. For WTA attacks, the
author tried to use a probability density function index (pdf-id)
sequence matching method to hide the command audio into the
song audio. This method involves creating a targeted command by
replacing certain phonetic units in the original command with other
units that have similar acoustic features, but a different meaning.

In order to make the attack over-the-air and accomplish WAA
attack, the author added a noise model to simulate the background
noise and electronic noise of speakers to the pdf-id sequence match-
ing model 𝑥 ′ (𝑡) = 𝑥 (𝑡) + 𝜇 (𝑡), where 𝑥 (𝑡) is the result from a WTA
attack and 𝜇 (𝑡) is the random noise model. The author reports 100%
success rate on WTA attacks and achieves a 96% success rate when
using the JBL speaker with a 1.5m distance between the speaker
and microphone.

In Qin et al. [112], the author improved the C&W attack so that
the attack can play over-the-air. The author proposed an attack
scenario to attack the Lingvo ASR system [123]. The author made
the perturbation further imperceptible by using frequency masking,
where a softer sound becomes inaudible since it is obscured by a
louder sound. The power spectral density, 𝑝𝛿 , of the perturbation
is calculated in each iteration to make sure it falls below the mask-
ing threshold, 𝜃𝑥 , of the original utterance. The loss function is
formulated as:

ℓ (𝑥, 𝛿, 𝑡) = ℓ𝑛𝑒𝑡 (𝑓 (𝑥 + 𝛿), 𝑡) + 𝛼 · ℓ𝜃 (𝑥, 𝛿) (6)

The first part of the equation is from the C&W attack to make the
audio produce the target label where 𝑥 is the original speech, 𝛿 is the

added pertubation and 𝑡 is the target transcript. The second part of
the equation controlled by weight 𝛼 aims to make the perturbation
imperceptible. The optimization problem can be then formulated
as:

min
𝛿

ℓ (𝑥 + 𝛿, 𝑡) + 𝛼

⌊
𝑁
2
⌋∑︁

𝑘=0
max {𝑝𝛿 (𝑘) − 𝜃𝑥 (𝑘), 0} (7)

N here is the STFT window size. 𝑝𝛿 (𝑘) is known as the power spec-
tral density (PSD) of the perturbation and 𝜃𝑥 (𝑘) is the frequency
masking threshold of the original audio where 𝑘 represents the kth
bin of the spectrum of frame x.

Besides the above contribution, the author also tries to make
the attack physical. The author first simulates the room impulse, 𝑟 ,
and convolves the speech with it to produce the reverberant signal,
𝐶 (𝑥) = 𝑥 ∗ 𝑟, 𝑡 ∼ T. Then the loss function becomes:

ℓ (𝑥, 𝛿,𝑦) = E𝑡∼T [ℓnet (𝑓 (𝐶 (𝑥 + 𝛿)), 𝑡)] + 𝛼 · ℓ𝜃 (𝑥, 𝛿) (8)

where the first part of the equation is the robustness loss and the
second part of equation is for imperceptibility as before. In terms
of results, the author first uses three experiments with Amazon
Mechanical Turk users to evaluate the effectiveness of adversarial
examples in audio manipulation, finding that users had difficulty
distinguishing between clean and adversarial examples. These ad-
versarial examples are sent to the Lingvo ASR system [123] and
reach 49.65% over-the-air accuracy and 22.98% word error rate
(WER) while keeping the perturbation imperceptible.

In Yakura et al. [148], the author successfully placed an over-
the-air attack to the Deepspeech ASR system. In order to aid the
robustness of the audio adversarial example and make the over-
the-air attack possible, the author introduces three techniques to
simulate the transformations caused by playback and recording,
into the generation process. The three components are band-pass
filtering, room impulse response, and white Gaussian noise. The
author started by using the original loss function from C&W attack
to generate the audio adversarial audio as follow:

argmin
𝒗

ℓ (
𝑓

𝑀𝐹𝐶𝐶 (𝒙 + 𝜹), 𝑡) + 𝜖 ∥𝜹 ∥ (9)

Here 𝑥 and 𝛿 represent the original speech signal and the added
perturbation.𝑀𝐹𝐶𝐶 (·) indicates the MFCC feature extraction from
the mixed signal 𝑥 +𝛿 . After the logical audio adversarial example is
successfully generated, the author adds robustness to the function.
First, the author uses a band-pass filter to limit the frequency range
of the perturbation. As was introduced before, modernmicrophones
are often made to automatically cut off the inaudible range of the
signal. Therefore, the author limits the frequency bands to 1k to 4k
Hz. The loss function is updated as follow:

argmin
𝜹

ℓ (𝑀𝐹𝐶𝐶 (�̃�), 𝑡) + 𝜖 ∥𝜹 ∥

where �̃� = 𝒙 + 𝐵𝑃𝐹
1𝑘∼4𝑘 Hz

(𝜹)
(10)

An impulse response represents the reaction obtained when an
audio system is presented with a brief input signal, called an im-
pulse. In the second step, the author aims to make the generated
adversarial examples robust against reverberation by incorporating
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impulse responses from various environments into the generation
process [108]. Similar as [13], the author comuptes the expectation
value over impulse responses recorded in diverse environments.
Therefore, the loss function further updates as:

argmin
𝜹
Eℎ∼H [ℓ (𝑀𝐹𝐶𝐶 (�̃�), 𝑡) + 𝜖 ∥𝜹 ∥

𝑓

]

where �̃� = Convh (𝒙 + 𝐵𝑃𝐹
1𝑘∼4𝑘 Hz

(𝜹))
(11)

where H indicates the set of collected impulse responses. The
convolution step using impulse response ℎ is shown as 𝐶𝑜𝑛𝑣ℎ . The
last technique the author uses is to add random white Gaussian
noise into the generation process. Adding white Gaussian noise
to the training process has been proven to help the adversarial
example become robust to background noise [55]. Therefore, the
final loss function can be described as:

argmin
𝜹
Eℎ∼H,𝒘∼N(0,𝜎2 ) [ℓ

𝑓
(MFCC(�̃�), 𝑡) + 𝜖 ∥𝜹 ∥]

where �̃� = Convh (𝒙 + 𝐵𝑃𝐹
1𝑘∼4𝑘 Hz

(𝜹)) +𝒘
(12)

where𝑤 is a N
(
0, 𝜎2

)
white Gaussian noise. The result shows the

attacker reaches a 100% attack rate by attack JBL CLIP2 and Sony
ECM-PCV80 microphone from 0.5 meters away.

3.4.3 Black box attack. Until now, all adversarial example genera-
tion techniques we introduced are white box attacks, which require
the attacker to have complete knowledge of the model architecture
and parameters so that the author can compute the gradient of the
model and apply the attacks. Recent studies show that black box
attacks are also possible in the speech domain [18, 101, 131]. With
black box attacks, the attacker does not need information about
the speech recognition model so that they can apply the attacks to
proprietary systems, such as Google and Amazon APIs.

In Taori et al. [131], the author introduces a black box adversar-
ial example method using the CTC loss and Deep Speech. They
did not use any gradient information from the model so that this
can be treated as a black box attack. The attack scenario contains
two stages. In the first stage, the attacker uses a genetic algorithm
approach to generate the adversarial audio example, as Fig. 11
shows. The genetic algorithm approach for adversarial attacks on
speech-to-text systems involves iteratively perturbing benign au-
dio samples by applying evolutionary methods like crossover and
mutation, using a scoring function based on CTC-Loss to determine
the best samples and refining the population over time until the
desired target is reached or the maximum number of iterations is
completed.

Given a original input 𝑥 and target phrase 𝑡 , the algorithm first
duplicates the input by the population size the author selects. The
author chose 100 as the population size here. Then, on each iteration,
the top 10 elite samples with the lowest CTC loss were chosen
using a sorting function. These elites then performed crossover
and momentum mutation to generate better adversarial examples.
The author also added a high pass filter to add noise to the system.
After the output of the adversarial sample is close to the target, the
attack shifts into the second stage. In the second stage, the author
applies a gradient estimation method at 100 random indices of the
audio to further fine tune the adversarial example.

Figure 11: Genetic algorithm approach fromTaori et al. [131].

The result is satisfying but not perfect. 35% accuracy and 89.25%
similarity score is reported for attacking the Deepspeech ASR sys-
tem. Therefore, even though a black box attack is much more pow-
erful than a white box attack, efforts are still needed in this topic
for higher accuracy.

3.4.4 Universal perturbation attack. The Universal perturbation
attack means the attacker generates a perturbation that can be
added to different input audio and cause a misclassify by the ASR
system. Universal perturbations have been proven to be effective
in image-domain adversarial examples [99]. Recent studies show
that universal perturbations also exist in the audio domain. One
thing worth noting is that all the universal perturbation attacks are
untargeted, which means they cannot control the resulting tran-
script. In most cases, the resulting transcription is not a meaningful
sentence. Therefore, this type of attack is a limited threat.

In Neekhara et al. [103], the author applies an untargeted uni-
versal perturbation attack on DeepSpeech. The goal of the attack
is to find a a quasi-imperceptible universal perturbation 𝛿 that can
mis-transcribe most data points sampled from a certain distribution.
In order to accomplish this task, the author borrowed an idea from
the image domain [99]. The author first went over the data points
in the original signals 𝑥 iteratively and gradually builds the pertur-
bation vector 𝛿 . At each iteration, the author finds the minimum
perturbation Δ𝛿𝑖 that can cause the maximum character error rate
(CER). Then they add this perturbation to the desired universal per-
turbation 𝛿 . In order to make the perturbation quasi-imperceptible,
the author needs to check ∥𝛿 ∥∞ < 𝜖 after each iteration where 𝜖 is
the maximum allowed 𝑙∞ of the perturbation. The result reported
a 88.24% success rate and 1.07 mean CER when maximum allowed
∥𝛿 ∥∞ equals 400, where mean 𝑑𝐵𝑥 (𝛿) = −30.18. The success rate
and mean CER lower to 72.42% and 0.82 when the maximum al-
lowed ∥𝛿 ∥∞ equals 100, where the mean 𝑑𝐵𝑥 (𝛿) = −42.03. The
attack method can also transfer to Wavenet based ASR system
with a 63.28% success rate and 0.6 mean CER when the maximum
allowed ∥𝛿 ∥∞ equals 400.

4 DEFENSE APPROACHES
In this section, we discuss privacy-defending mechanisms to protect
user privacy from the previously mentioned attacks. There are two
main privacy-defending research directions: detection only and
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complete defense. In detection only approaches, the defender devel-
ops a classifier that determines whether the input from the target
user has been attacked or not. For complete defense approaches,
the goal is the lower the effectiveness of the attack.

4.1 Detect Only Defense
A detect only defense is still the most widely used approach for
addressing audio privacy attacks. This type of defense is effective to
all known attacks and easy to implement. The detect only defense
aims to detect when a malicious voice command is inputted to the
voice-controlled system. This can help to alarm the user to avoid
the incoming adversarial attack.

4.1.1 Add-on classifier. The most common detect only defense is
to add a classifier to identify whether the input signal is adversarial
or not. The defender provides a classifier with a large number of
adversarial examples and real speech signals. The classifier then
identifies the difference between real and fake speech signals.

For impersonation attacks, a challenge from The Interspeech con-
ference named Automatic Speaker Verification Spoofing and Coun-
termeasures (ASVspoof) Challenge has provided exciting results.
The challenge has been held three times, in 2015 [146], 2017 [73]
and 2019 [135]. In the most recent 2019 challenge, both logical ac-
cess (LA) and physical access (PA) attack scenarios are considered.
LA attacks suggest that the attack signal is directly injected into
the voice-controlled system. For this scenario, the participants are
asked to build a classifier to identify whether the audio is generated
by a text-to-speech synthesis (TTS) approach or by voice conver-
sion (VC) technology. For training and validation datasets, 6 known
attacks from 2 VC systems and 4 TTS systems are used. For the test
dataset, 11 unknown systemswith 2 VC, 6 TTS and 3 hybrid TTS-VC
systems were chosen to test the generality of the model when they
saw unknown data [135]. For the PA scenario, the participants need
to build a classification model that distinguishes between human
spoken speech and replayed speech. Replayed audio used in the
challenge is recorded by 27 different acoustic configurations and
9 different replay configurations. The 27 acoustic configurations
include the combination of 3 categories of room sizes, 3 categories
of reverberation and 3 categories of talker-to-microphone distance.
The 9 replay configurations include 3 attacker-to-talker recording
distances and 3 categories of loudspeaker quality.

Two evaluation metrics are used, where the first one is the tan-
dem detection cost function (t-DCF) [72] and the second one is the
equal error rate (EER). The EER and t-DCF are both performance
measures used to evaluate the trade-off between false acceptances
and false rejections. The transitional EER is defined as the point at
which the false acceptance rate (FAR) and the false rejection rate
(FRR) are equal.

The t-DCF is defined as:

t-DCF = 𝐶𝑚𝑖𝑠𝑠 × 𝑃𝑚𝑖𝑠𝑠 × EER𝑎𝑐𝑡 +𝐶𝑓 𝑎 × 𝑃𝑓 𝑎 × EER𝑠𝑝𝑜𝑜 𝑓 (13)

where 𝐶𝑚𝑖𝑠𝑠 and 𝐶𝑓 𝑎 are the costs associated with a missed detec-
tion. 𝑃𝑚𝑖𝑠𝑠 and 𝑃𝑓 𝑎 are the prior probabilities of a missed detection
and false acceptance, respectively. EER𝑎𝑐𝑡 is the actual equal error
rate (EER) of the system on genuine speech, and EER𝑠𝑝𝑜𝑜 𝑓 is the
EER of the system on spoofed speech. The t-DCF can be seen as a
weighted combination of the actual EER and the EER on spoofed

Figure 12: Detailed structure of residual block used in Alzan-
tot et al. [9]

speech, where the weights are determined by the costs and the prior
probabilities. The goal is to minimize the t-DCF, which corresponds
to finding a balance between false acceptances and false rejections
that is optimal for the given costs and prior probabilities.

From the results [135], the top teams use both neural network
based classifiers and an ensemble of classifiers. One representative
paper from this challenge is [9]. In this paper, Alzantot et al. use
3 different features: Mel-frequency Cepstral Coefficients (MFCCs),
Constant-Q Cepstral Coefficients(CQCCs) and the logarithmic mag-
nitude of the Short-time Fourier transform (STFT). CQCC uses a
constant-Q transform and geometrically spaced frequency bins to
get a higher frequency resolution at lower frequencies and higher
temporal resolution at higher frequencies. More details about CQCC
can be found in Todisco et al. [134]. Three different models based
on the input were then generated. Three models shared the same
structure of a classic classifier from the image domain called ResNet
[56]. A 6 residual block ResNet was chosen. The detailed structure
for each residual block can be found in Fig. 12. Two fully connected
layers and a softmax layer are connected at the end of the net-
work to produce the probability of whether the audio is fake or
not. A fusion mechanism is used to ensemble all MFCC-ResNet,
Spec-ResNet and CQCC-ResNet together. A weight is assigned to
each model based on its performance on the validation dataset. The
result shows that the fusion model reached a 0.1569 t-DCF and 6.02
EER on logical access task, 0.0693 t-DCF and 2.78 EER on physical
access task.

For ultrasonic attacks, in Zhang et al. [158], the authors develop
a support vector machine (SVM) based classifier. The strategy in-
volves analyzing the frequency range from 500 to 1000 Hz, where
the attack signal shows differences from both the original signal
and the recorded one. To validate the approach, the authors gener-
ated 12 voice commands from two different text-to-speech engines,
NeoSpeech and Selvy, and obtained both recorded and recovered
samples. Using a simple SVM classifier, the approach was able to
distinguish recovered audio from recorded ones with 100% true
positive and true negative rates. The results demonstrate the feasi-
bility of using a software-based defense strategy to detect Dolphin
attacks [158].

In the study by Roy et al. [1], the researchers attempt to classify
attack signals produced by utilizing three primary characteristics
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of the created ultrasonic attack voice. Firstly, the attack signal con-
sistently falls below the sub-50Hz band, unlike the human voice.
Secondly, there is a strong correlation between the inaudible leaked
signal and the ultrasonic attack signal. Thirdly, human voices typi-
cally oscillate above or below an amplitude of 0, while the attack
signal’s amplitude consistently remains above 0. As a result, the
amplitude skewness from constructing the ultrasonic attack sig-
nal can be employed as an additional feature to discern whether a
signal originates from an ultrasonic source. The findings indicate
that this detection technique achieves 99% accuracy in identifying
counterfeit voices, as reported by Roy et al. [115].

For an adversarial example, [116] develops a CNN-based classi-
fier to detect C&W attacks, as we introduced earlier in section 3.4.
The study presents the design and creation of two separate datasets,
A and B, based on white-box and black-box attack methods, respec-
tively. Dataset A is crafted using the C&Wwhite-box attack method.
The audio signals are divided into three categories - short, medium,
and long - based on length, and corresponding targets for attacks
are composed. Using these categories, 900 adversarial examples and
900 normal examples are generated. Dataset B is created with mu-
tual targeting on Google Speech Command dataset with 10 different
commands. The same number of adversarial and normal examples
(1800 each) are generated. Both datasets maintain a 16kHz sampling
rate. The results are reported under a 95% confidence interval for all
testing scenarios. Matched training and testing conditions achieved
over 98% accuracy, and multi-condition training achieved over 96%
accuracy. These results indicate that the CNN model can effectively
learn adversarial perturbation, even with noise present in some
normal speech examples. Also, the CNN model performed better in
detecting white-box examples than black-box ones.

In Däubener et al. [33] and Jayashankar et al. [62], the authors
use different uncertainty quantifications (UQ) to detect the adver-
sarial examples. Uncertainty quantification (UQ) is the process
of characterizing, modeling and analyzing the uncertainties in a
system or model. In Däubener et al. [33], the author uses a feed-
forward neural network and three neural networks specifically
designed for uncertainty quantification, namely a Bayesian neural
network, Monte Carlo dropout, and a deep ensemble and reached
99% accuracy on detection adversarial examples.

Jayashankar et al. [62] employed dropout uncertainty and a SVM
to detect a variety of adversarial examples. By using a defense
dropout rate of 0.1 and training the SVM on the first four mo-
ments of the character-sequence-based uncertainty distribution,
they achieved optimal results. For the C&W attack, their accuracy
was 96.5%. For the Noise Reduction Robust (NRR) attack, they at-
tained an accuracy of 88.5%. In the case of the Imperceptible Audio
attack, they reached a 92.0% accuracy, and for the Universal Pertur-
bation, they achieved 100% accuracy.

The add-on classifier defenses are useful and easy to implement.
They did not change any parameters of the original model. However,
they also have limitations. First, as the classifiers are built by deep
neural networks, they are also vulnerable to adversarial attacks.
Also, these classifiers require large number of adversarial data to
train. Lastly, their performance still needs to improve for unseen
attacks.

4.1.2 Human motion detection. Since all the attacks we introduced
in section 4 use speakers to play a signal or simply inject noise
into the voice-controlled system, another interesting detection only
approach for voice-controlled system is that defenders can try to
detect whether the signal is from a live human or not.

In Chen et al. [26], the author uses the magnetic field emitted
from the loudspeakers to detect impersonation attacks for voice-
controlled system. The defense mechanism tried to detect whether
the source of the voice command is from a speaker by using a
magnetometer. If the command is from an electronic speaker, the
system will reject the incoming command. The results show that
the system reaches 100% accuracy and 0 EER on detection. However,
the system achieved this performance when distances between the
sound source and the smartphone were less than or equal to 6 cm.
In Lei et al. [83], the researchers develop a Virtual Security Button
(VSButton) that uses WiFi signals to detect indoor human motion.
When motion is detected, the voice-controlled system becomes
receptive to voice commands. However, there may be instances
where a person speaking a voice command does not exhibit de-
tectable motion, resulting in a low true negative rate. The author
evaluates the VSButton prototype in three different space settings:
a square room, a rectangular room, and a real-world apartment.
In the square room experiment, two configurations were tested
at four indoor (A, B, C, D) and six outdoor (A’, B’, C’, D’, M’, N’)
locations. In Configuration 1, the Echo Dot laptop (RX) is central
in the room, with the WiFi router (TX) at the edge. In Configura-
tion 2, RX and TX sit equidistantly between Locations N’ and M’,
dividing the distance into thirds. The rectangle room is similar to
square room Configuration 2 but in a rectangle room with brick
walls. The real-world apartment is a 75𝑚2 apartment with two
bedrooms. The performance is measured by the system’s ability
to correctly identify three cases: no motion, indoor motion, and
outdoor motion. Six volunteers participate in the experiment, per-
forming three different motions - waving a hand, sitting down and
standing up, and jumping inside and outside a room, representing
weak, medium, and strong human motions, respectively. In the
experiment, the receiver (laptop with an Echo dot) sends 50 Inter-
net Control Message Protocol (ICMP) Echo Request messages per
second to the transmitter (WiFi router), enabling the continuous
collection of channel state information (CSI) for motion detection.
In a square room with configuration 1, all indoor motions could
be differentiated from no-motion cases and outdoor motions at
all locations except location M’. The Mahalanobis distance for the
WAVE-HAND motion ranged from 0.191 (location D) to 0.218 (lo-
cation A) for indoor locations, and from 0.079 (location C’) to 0.156
(location M’) for outdoor locations. In the same square room with
configuration 2, the Mahalanobis distance of each indoor motion
was higher than the maximum distance (i.e., 0.241 from JUMP at
Location M’) of all the outdoor motions. In a rectangular room with
brick walls, the minimum Mahalanobis distance among all indoor
motions (i.e., 0.147 from WAVE-HAND at Location A) was higher
than the maximum distance (i.e., 0.042 from JUMP at Location M’)
of all outdoor motions. Finally, in the real-world apartment setting,
the VSButton was able to differentiate between indoor and outdoor
locations with a threshold 𝑡 set to 0.1. In a 100-minute experiment,
the Alexa device was accurately activated by indoor motions and
was not activated by outdoor motions. The experimental findings
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demonstrate that the VSButton is capable of accurately distinguish-
ing between indoor motions and instances of no motion or outdoor
motion.

In Feng et al. [42], a new system called VAuth is introduced,
which offers continuous authentication for voice-controlled sys-
tems. VAuth collects body-surface vibrations from the user and
matches them with the voice command captured through micro-
phones on widely-used wearable devices. The researchers imple-
mented a VAuth prototype using a commodity accelerometer and an
off-the-shelf Bluetooth transmitter, integrating it with the Google
Now system in Android, making it easily extendable to other plat-
forms like Cortana, Siri, or phone banking services. They conducted
experiments with 18 participants who issued 30 different voice
commands using VAuth in three wearable scenarios: eyeglasses,
earbuds, and necklaces. The results showed that VAuth achieved
over 97% detection accuracy and nearly 0 false positives, indicating
successful command authentication. It worked effectively across
different accents, mobility patterns (still vs. jogging), and languages
(Arabic, Chinese, English, Korean, Persian). VSAuth successfully
blocked unauthenticated voice commands replayed by an attacker
or impersonated by other users and it incurred minimal latency
(average of 300ms) and energy overhead (requiring recharging only
once a week). However, VAuth’s reliance on users wearing these
devices can be inconvenient for everyday use.

Exploring human motion detection as a potential avenue for
detecting adversarial attacks holds significant promise for future
studies. However, recent work has been limited by hardware con-
straints and has not yet achieved satisfactory real-world protection.
As such, it is necessary to conduct additional research that utilizes
alternative features for detecting human motion in order to address
this limitation.

4.2 Complete Defense
Compared to detect only defense techniques, complete defenses
are more powerful. This type of defense uses different techniques
to modify the original model setup and help the system become
robust to certain types of adversarial attacks. When the attack
command reaches the voice-command system, the target network
could achieve its original goal and provide the correct output. How-
ever, complete defenses also have their limitations. When unknown
attacks arrive, the modified system may fail.

There are two advantages of this type of defense. Firstly, it can be
widely used in different types of attacks [83, 113, 141]. Secondly, this
type of defense is easy to implement, as the defense does not require
changes to be made or the system to be retrained. Detection only
defenses also have their weaknesses, since they can only detect if
the attack occurs but they cannot resolve the problem. The complete
defense approach addresses this, by lowering the effectiveness of the
attack. Complete defense approaches are normally used to defend
against adversarial attacks. This type of defense has been proven to
be useful in the image domain [4, 43, 81, 155]. More audio privacy-
defending approaches also aim to strengthen the deep learning
model. The complete defense approaches also have their weakness.
Firstly, unlike detection only defense mechanisms which usually
have 90% or high accuracy, the complete defense can only lower
the effectiveness of the adversarial examples in a certain extent.

Secondly, most complete defense algorithms only work for known
attacks. When unknown attacks appear, the modified model may
crash.

4.2.1 Hardware-based defense. In Zhang et al. [158], the author
provided two hardware based defenses to avoid ultrasonic attacks.
The first and straight forward way is to enhance the microphone.
Most MEMSmicrophones now still allow signals in ultrasonic range
(>20kHZ) 15 16. Therefore, the author suggested these type of mi-
crophones should be enhanced and apply filters to eliminate any
signals within the ultrasonic range. The second defense mechanism
the author proposed is to add a module before the low pass filter
to detect the ultrasonic signal and cancel the baseband of it. These
two methods can efficiently defend against weak ultrasonic attacks.
However, for stronger ultrasonic attacks such as [115], these type
of defense may not work.

4.2.2 Increasing security level. In Petracca et al. [109], the author
proposed a security level increasing method to prevent adversarial
attacks on audio channels in mobile devices. The authors design and
implement AuDroid, an extension to the SELinux reference monitor
integrated into the Android OS. AuDroid enforces lattice policies on
the dynamic use of system audio resources and gathers input from
system apps and services to evaluate options for resolving unsafe
communication channels. The system is specifically integrated into
the Android Media Server, controlling access to the microphone and
speaker to protect system apps from third-party apps and external
attackers. AuDroid is evaluated on six types of attack scenarios and
on 17 widely-used apps that utilize audio. The results show that
AuDroid effectively prevents exploits without impairing the normal
functionality of system apps and services, with defense times of less
than 4 µs for the speaker and less than 25 µs for the microphone,
resulting in insignificant overhead during app usage. This type of
defense allows the system to defend the operating system attack
by using the built-in speakers [34]. However, the limitation of this
defense is that it is not robust to other types of attacks, such as
adversarial examples.

4.2.3 Modify input data. Modify input data for adversarial training
has proven its effectiveness in the image domain [50, 117]. This
defense uses adversarial training to regularize the network, reduce
over-fitting and add robustness to the network.

In Sun et al. [127], the authors incorporate adversarial examples
directly into the training dataset to train the ASR system. During
the training process, the Fast Gradient Sign Method (FGSM) is
employed to generate adversarial examples as training data. The
underlying concept is to create adversarial examples that maximize
the loss function. The perturbation can then be calculated as:

𝜹𝐹𝐺𝑆𝑀 = 𝜖 sign (∇𝒙 𝐽 (𝜽 , 𝒙, 𝑡)) (14)
where 𝜖 is a constant that controls the amplitude of the perturba-
tion , 𝑥 represents the input, 𝑡 denotes the target and 𝜃 signifies
the model’s parameters. 𝐽 (𝜽 , 𝒙, 𝑡) is the average cross-entropy loss
function. The 𝑠𝑖𝑔𝑛 operation in FGSM yields the direction of the
gradient, either positive or negative, instead of its actual value,
15http://www.mouser.com/ds/2/720/DS37-1.01%20AKU143%20Datasheet-552974.pdf
16https://www.mouser.com/datasheet/2/720/PB24-1.0%20-%20AKU242%20Product%
20Brief-770082.pdf
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Figure 13: Detailed structure of the defense mechanism from
Mendes et al. [97]

facilitating better control over the quantity of perturbation intro-
duced.The perturbation is dynamically generated during each iter-
ation, which helps to improve the robustness of the ASR system.
By setting 𝜖 to 0.3, the results demonstrate an average 14.1% WER
reduction. While this method effectively enhances robustness to
defend against known attacks, it has its limitations. When an un-
known adversarial example is inputted into the ASR system, it may
still be susceptible to deception.

In Mendes et al. [97], the authors proposed a complete defense
method to protect speech from adversarial examples. The overview
of this defense can be found in Fig. 13. The raw audio signal is first
transformed into the time-frequency domain using a Short-time
Fourier transform (STFT). Then the frequency masking thresh-
old 𝜃𝑥 is calculated by using the method from Qin et al. [112].
A corresponding defensive perturbation is calculated by 𝛿𝐷 =

max(0,N(𝜇, 𝜎)) where 𝜇 := 3𝑘 × 𝜃𝑥 and 𝜎 := 𝑘 × 𝜃𝑥 . 𝑘 here de-
notes the proportionality. The last step of this defense is to add the
perturbation to the original input and feed into ASR model.

4.2.4 Modify the network. Besides modifying the input and using
data augmentation techniques to make the model more robust to
adversarial examples, we can also directly modify the network. In
Yang et al. [152], the author provided an additional term to the
network based on the temporal dependency between a real speech
and an adversarial example. For a given audio, the author first se-
lected the prefix of length 𝑝 and provided x to a ASR system to
generate the transcript 𝑆𝑝 . Then The complete audio signal was
inputted into the ASR system, and the transcribed result prefix of
length 𝑝 was selected as 𝑆{whole ,𝑝 } . Due to the temporal depen-
dency, 𝑆𝑝 and 𝑆{whole ,𝑝 } should have consistent results. However,
if the speech has been attacked with an added perturbation, they
will not produce the same result. The study evaluated the proposed
Temporal Dependency (TD) detection method on speech-to-text
attacks - Commander Song and Optimization based attack(Opt)
3.4. For the Commander Song attack, the TD method with p=1/2
successfully detected all generated adversarial samples. In the Opt
attack, the TD method achieved an AUC score of 0.936 on Com-
mon Voice and 0.93 on LIBRIS when using WER as the detection
metric. When p=4/5 and using CER, the AUC score reached 0.969,
indicating that the TD-based method is promising in distinguishing
adversarial instances. The results suggest that the TD-based method
is an easy-to-implement and effective approach for characterizing
adversarial audio attacks.

4.2.5 Audio compression. Data compression has emerged as a pop-
ular method of adversarial defense in the image domain [36], and
similar ideas have been implemented in the audio domain. In Das
et al. [31], the study explores the use of compression techniques,
such as Adaptive Multi-Rate audio codec(AMR) and MP3 compres-
sion, to mitigate adversarial perturbations in the audio domain. The
researchers tested these techniques on adversarially manipulated
audio samples and evaluated their effectiveness in defending an
ASR model. They created targeted adversarial instances from the
first 100 test samples of the Mozilla Common Voice dataset and
preprocessed them using the compression techniques. The pro-
posed system significantly reduces the attack success rate from
92.5% to 0%. The results indicate that the word error rate (WER) of
the ASR system without any defense increased from 0.369 to 1.287.
The WER slightly increased to 0.666 from 0.488 when using AMR
compression, and to 0.78 from 0.4 when using MP3 compression.
Likewise, in Andronic et al. [11], the authors use MP3 compres-
sion to eliminate adversarial noise for the ASR system, resulting
in a 21.31% reduction in the relative character error rate of adver-
sarial examples and MP3-compressed adversarial examples. These
compression techniques, based on psychoacoustic principles, were
found to be effective in removing adversarial components from the
audio that are imperceptible to humans but confuse the model.

4.2.6 Adversarial Defense. The tactics used for attacking others
can also serve to protect them. Adversarial examples are increas-
ingly being employed by researchers to safeguard users’ privacy
from voice-controlled assistants. For instance, Liu et al. [93] have de-
vised "MyBabble," which uses the user’s own voice to generate per-
sonalized noise that thwarts speech hijacking by voice-controlled
assistants. Similarly, Liu et al. [92] have implemented an end-to-
end approach that produces utterance-specific perturbations that
obscure a set of words considered sensitive. In Xu et al. [147], the
authors utilize adversarial noise based on MFCCs to defend users
against malicious speech recognition (ASR) systems, thereby raising
the system’s word error rate. Additionally, in Chen et al. [27], the au-
thors created a wearable microphone jammer that emits ultrasonic
sounds to protect people’s conversations from being overheard by
voice-controlled devices.

5 DISCUSSION
In the previous sections, we conducted a comprehensive list of
privacy-attacking and privacy-defending techniques. We intro-
duced the theory behind each mechanism. We also talked about
the limitations and advantages about certain techniques. In this
section, we discussed our key findings and make recommendations
for future research.

Combination of attacks may become a big threat. Until now,
we define each attack based onwhen it occurs in the voice-controlled
system pipeline. However, different attacks may combine these
attacks, resulting in stronger attacks. For example, an operating
system attack can be combined with an adversarial example so that
the malware causes the built-in microphone to play the inaudible
adversarial example. In this case, this type of attack is much harder
to detect and defend.
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Reasons for adversarial vulnerability need more investiga-
tion. The literature shows that all kinds of deep learning networks
are vulnerable to certain attacks. In our previous explanation, non-
linearity is the key feature of the existence for those attacks. How-
ever, more investigations are needed for exploring the common
feature of these attacks. Current complete defense methods still
cannot fully defend certain known attacks. More investigations
are needed to find new features for those attacks and build more
robust ASR defense models. Also, many counter measurements are
based on DNNs. Theses defenses are also vulnerable to adversarial
attacks. A more general and stable defense may be needed.

6 CONCLUSION
Modern voice-controlled systems are vulnerable to privacy attacks.
In this paper, we proposed a categorization for privacy-attacking
and privacy defending mechanisms. We carefully introduced each
attacking and defending technique with their threat model. These
privacy attacks can happen in each stage of the voice-controlled
system and they pose real-world threats to our daily life. Privacy-
defending techniques can make the system more robust but still
cannot completely solve the problem. More studies are needed on
voice-controlled systems to ensure privacy is preserved for users.
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