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Abstract—Dereverberation is often performed directly on the
reverberant audio signal, without knowledge of the acoustic envi-
ronment. Reverberation time,T60, however, is an essential acoustic
factor that reflects how reverberation may impact a signal. In this
work, we propose to perform dereverberation while leveraging key
acoustic information from the environment. More specifically, we
develop a joint learning approach that uses a compositeT60 module
and a separate dereverberation module to simultaneously perform
reverberation time estimation and dereverberation. The reverber-
ation time module provides key features to the dereverberation
module during fine tuning. We evaluate our approach in simulated
and real environments, and compare against several approaches.
The results show that this composite framework improves perfor-
mance in environments.

Index Terms—Dereverberation, reverberation time, deep neural
networks, joint learning.

I. INTRODUCTION

R EVERBERATION occurs in everyday environments, due
to the reflection of sounds off the many surfaces in a

room, such as the furniture, walls and floors. This causes lis-
teners to hear a combination of the direct speech signal and
the reflections. The effects of reverberation often smear speech
across time and frequency, which negatively impacts individuals
with impaired hearing [1], [2], since reverberation degrades
perceptual quality and intelligibility. This also creates challenges
to various voice-based applications, including automatic speech
recognition (ASR) [3], [4], speaker identification [5], [6] and
speaker localization [7], [8], to name a few.

Current monaural approaches often use deep neural networks
(DNN) to remove reverberation. A spectral mapping method [9],
proposed by Han et al., maps the noisy and reverberant sig-
nal to an anechoic signal in the time-frequency (T-F) domain
using a fully-connected DNN. It has a post-processing stage
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that performs iterative phase reconstruction to re-synthesize the
estimated time-domain signal. Xiong et al. [10] use a multi-
layer perception (MLP) to estimate T60 using features from
a Gabor filterbank. A DNN estimates the complex ideal ratio
mask (cIRM) [11], which processes the magnitude and phase
responses in the imaginary and real domains. The approach
simultaneously handles noisy and reverberant conditions. The
usage of DNNs, however, is a limitation since they do not capture
long-term contextual information. To overcome this limitation,
Santos et al. proposed a dereverberation method that uses a recur-
rent neural network (RNN) [12] to capture long-term contextual
information, along with employing a 2-D convolutional encoder
to extract local contextual features. Another RNN model with
a long short-term memory (LSTM) network [13] proposed by
Zhao et al. predicts late reflections and subtracts them from the
reverberant signal to estimate the direct and early components
of reverberation. Zhao et al. later propose a dereverberation
model that uses temporal convolutional networks (TCN) with
a self-attention module [14]. This method uses self attention
to extract dynamic features from the input, and uses the TCN
to learn the non-linear mapping from reverberant to anechoic
speech. All the above approaches operate in the T-F domain.

Traditional signal processing methods have also been devel-
oped. These approaches can be divided into two categories:
spectral subtraction and inverse filtering. Lebart et al. proposed
a spectral subtraction approach [15] that removed reverberation
by canceling the smearing effects in phonemic energy using
prior knowledge of the reverberation time and phonemes. More
specifically, the approach estimated the power spectral density
(PSD) of the reverberation. The square root of the estimated PSD
is subtracted from the reverberant signal, resulting in the esti-
mation of the dereverberated signal’s spectrum. Yoshioka et al.
provided a generalized subband-domain multi-channel linear
prediction approach (also known as weighted prediction error-
WPE) without prior knowledge of acoustic conditions [16].
Tomohiro et al. [17] used a delayed linear prediction (DLP)
model to cancel the late reverberation without prior knowledge
of the room impulse responses (RIR). WPE estimates a filter
that predicts the reverberation tail and subtracts it from the
reverberant signal to obtain the maximum likelihood estimate.
It has been used in many applications [18], [19].

All the above approaches operate directly on the reverberant
signal and are either (1) agnostic of the acoustical and contextual
information about the room and signal or (2) they assume this
information is known and do not estimate it. In particular,
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the approaches do not leverage or estimate information about
the reverberation time, T60, which is a strong indicator of the
smearing effects of reverberation. It is possible to estimate this
information, for instance Bryan et al. [20] use a convolutional
neural network (CNN) to downsample the input to a single
T60 value. Considering how important the room environment
is to dereverberation, Wu et al. [21] investigate how different
context information affect the suppression of reverberation. The
approach uses a reverberation-time-aware DNN that estimates
the reverberation time based on the proper selection of the frame
shift and context window sizes during feature extraction. It then
supplies the log-power spectrogram to the DNNs for derever-
beration. Instead of manually generating different contextual
information based on the selected frame shift and window size,
a self-attention module learns the different representations au-
tomatically. This method, however, requires manually choosing
the contextual information for different T60s and a reliable
T60 estimator. This reverberation-time-aware DNN has been
used as a front-end process for ASR [22]. Another temporal-
contextually aware approach is proposed by Wang et al. [23]. The
main dereverbation model uses time-aware context frames to
predict the dereverbation spectrogram, while jointly optimizing
the reverberation time. This environment-aware network jointly
performs reverberation-time estimation and dereverberation,
however, the approach does not always generalize and needs
improved performance in real-world settings. These approaches
indicate that optimizing with reverberation time offers benefits
to dereverberation.

In this paper, we propose a joint-learning approach for speech
dereverberation that accurately estimates T60 and late reflec-
tions. Early reflections are beneficial to speech intelligibility,
so we decided to remove the late reflections [24], [25]. We
separately train a T60 estimator that matches the model from
our preliminary work [26], and a dereverberation network [13].
Additional features from the T60 estimator are also provided
to the dereverberation module. The new feature connects the
two networks, and fine-tuning is subsequently performed to
generate the final dereverberated result. We do run experiments
to determine the loss function from [26] that is best for the joint
approach. There are four major differences between the adopted
dereverberation model and the model in [13]: 1) the window and
FFT sizes, 2) we stacked three LSTM layers instead of two, 3)
we remove the weight-dropping approach during training, but
instead use dropout and train with a larger and more balanced
dataset. Finally, 4) we also incorporate different input features.

The rest of the paper is organized as follows. Background
information is provided in Section II. A detailed algorithm
description is provided in Section III. The experiments are
explained in Section IV. The evaluation of the experiments and
the results are provided in Section V. A discussion of related
issues and conclusions are mentioned in Sections VI and VII.

II. BACKGROUND

A reverberant signal, x(t), can be modeled as the convolution
of an anechoic speech signal, s(t), with a RIR, h(t) [27], x(t) =
s(t) ∗ h(t), where ∗ denotes convolution, and t denotes the time

index. The RIR can be decomposed into three parts: the direct
RIR, early RIR and late RIR: h(t) = hd(t) + he(t) + hl(t),
where hd(t), he(t), hl(t) correspond to direct, early and late
components, respectively. Example decompositions are shown
in Fig. 1. The direct component hd(t) starts at the beginning
of the RIR and ends approximately 1 ms after the first peak,
while the early component extends roughly 50 ms after the direct
sound [24]. The late component starts from the end of he(t) to
the end of the RIR. The transition time between the early and
late reflections should be between 50 and 150 ms [28], where
a value in this range has often been used [25], [29], [30]. Here,
we fix the transition time between the early and late reflections
to 50 ms. Each RIR component has the same length as h(t), but
they are zero valued outside of the above mentioned intervals.

Using the distributive property, a reverberant signal can be
modeled as the sum of the three RIR components that are
convolved with an anechoic speech signal, resulting in the direct
sound, xd(t), early reflections, xe(t), and late reflections, xl(t),
as shown in the below equation.

x(t) = s(t) ∗ (hd(t) + he(t) + hl(t))

= s(t) ∗ hd(t) + s(t) ∗ he(t) + s(t) ∗ hl(t)

= xd(t) + xe(t) + xl(t)

= xde(t) + xl(t) (1)

xde(t) denotes the direct-early component that is defined as the
summation of the direct sound and early reflections.

The reverberation time, T60, is the time required for the sound
in a room to decay 60 dB. It can be modeled using the Sabine
formula [31]:

T60 = 0.16V/αS (2)

where V is the volume of the room, S is the area of its surfaces,
and α denotes the absorption coefficient. Longer reverberation
times indicate that more reflections occur, which leads to more
smearing across time and frequency. Hence the reverberation
time has a functional relationship with the RIR. This is also
depicted in Fig. 1, which shows the RIRs generated using
different reverberation times.

III. ALGORITHM DESCRIPTION

We propose to use a DNN to jointly estimate the reverberation
time, T60, and the direct-early component of reverberant speech.
Our proposed approach consists of three stages: (1) T60 esti-
mation, (2) direct-early component estimation, then (3) jointly
perform T60 estimation and dereverberation. A depiction of our
approach is shown in Fig. 2.

A. T60 Estimation and Classification

We treat T60 estimation as a multi-task problem, where we
simultaneously (a) estimate and (b) classify the reverberation
time directly from the reverberant signal. We adopt this approach
because multi-task learning has shown to be beneficial for speech
enhancement [32], [33], [34], and when estimating perceptual
quality metrics [35], [36].
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Fig. 1. The decomposition of a RIR into its direct path, early reflections and late reverberations. From left to right: T60 = 0.3 s, 0.6 s, 0.9 s.

Fig. 2. The proposed joint network is shown, where (A) shows the complete approach (B) displays the feature extraction module and (C) depicts the network
architecture for the T60 classifier and estimator. The dereverberation block is illustrated in Fig. 3.

1) Features: We compute the short-time Fourier transform
(STFT) of the reverberant signal, where then the log-magnitude
response is concatenated with the sin and cos of the phase,
θ, across all T-F bins. This is done because prior work has
shown that including phase information helps improve perfor-
mance [37]. We normalize this concatenated feature so that it is
zero mean and unit variance at each frequency bin, across all the
training samples.

2) Network Architecture: The normalized input is given to
a feature extraction module, which is shown in Fig. 2(b). It
consists of six convolutional layers (Conv), where each Conv
layer uses batch normalization (BN) during training. Max pool-
ing is used after every second Conv layer to downsample the
latent representation, except for the latter two layers where
max pooling is inserted in-between the last two Conv layers.
This architecture performed well on our preliminary experi-
ments [26] when we evaluated different cost functions and it
also has shown to perform well on related speech processing
tasks [38], [39].

Fig. 2(c) depicts the network architecture that jointly performs
T60 regression and classification. The latent representations that
are generated from the feature extractor serve as the input to the
composite T60 estimation stage. The composite T60 estimation

stage consists of two branches, each of which is supplied the
same input: (1) the regression only branch (e.g., the left branch),
and (2) the combined classification and classification-based
regression branch (e.g., the right branch). A similar architecture
was proposed in [40], [41]. For the regression only branch, the
shared input is supplied to a Conv layer with rectified linear
(ReLU) activation function. This is followed by an average
pooling layer, a fully connected layer with batch normalization
and a leaky ReLU activation, and a fully connected layer that
generates an estimated T60 value.

Fig. 2(c)(right) shows the network details for the T60 classifi-
cation portion of the composite estimation approach. It consists
of two FC layers as hidden layers, where each one is followed by
a BN layer. A leaky ReLU activation function is used in both FC
layers. After the hidden layers, a linear layer serves as an output
layer, where the output is further split into two sub portions:
T60 classification and T60 classification-based regression. The
former sub-portion uses a softmax activation and is represented
by the classification output in Fig. 2(c). The latter is based on
the following regression loss function:

CReg_T60
=

H∑

i=1

Ci
out × Ti (3)
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Fig. 3. Illustration of our proposed dereverberation block. The dashed arrow
only appears during fine tuning.

where × is element-wise multiplication, H denotes the number
of classes, Ti denotes the T60 time of the i-th class, Ci

out is the
estimated probability for the i-th class.

B. Direct-Early Component Estimation

Fig. 3 depicts our proposed dereverberation process. Prior
work shows that spectral subtraction for dereverberation can be
performed in the T-F domain for removing late reflections [13],
[42], so we elect to perform spectral subtraction after the deep
neural network estimation.

1) Features and Training Target: We first compute the STFT,
and use the cubic-root compressed magnitude as the input feature
and the cubic-root magnitude of the direct-early component
as the training target for the dereverberation module, which is
similar to [13].

2) Network Architecture: The compressed-magnitude fea-
tures are supplied to a unidirectional LSTM, since they learn
long-term dependencies. The LSTM network is shown in Fig. 3
within the dereverberation block. It consists of 3 LSTM layers. A
FC layer follows that maps the hidden states to the output, where
we predict the late reflections of the compressed magnitude
response. We then perform spectral subtraction by subtracting
the estimated late reflections from the cubic root magnitude of
the corresponding reverberant signal. This results in an estimate
of the direct-early component.

C. Joint Network

The two networks shown in Figs. 2 and 3 are initially trained
separately. In a final step, we propose to combine these two
networks and finetune training to form a new joint network,
as shown in Fig. 3. During joint training, the output from
the penultimate layer in the T60 classification block is used
as part of the input to the dereverberation block, where it is
concatenated with the compressed magnitude. This forms a
newer version of input features that contains both the audio
features and reverberation time features. We experimented with
different inputs that connected the two modules: 1) the scalar

output from the regression-only branch, 2) the one-hot vector
from the classification branch, and 3) the penultimate output. We
use the penultimate output of the T60 estimator, since it is more
likely to contain relevant information about the reverberation
time [43] and performed better empirically.

D. Cost Functions

The proposed cost function for pre-training the T60 branch is
shown below, where it is based on our prior work [26]:

LA = β × (α× Lcls + (1− α)× Lcreg) + (1− β)× Lreg

− |ρreg| − |ηreg| − |ρcls| − |ηcls| (4)

where LA is the loss combination of the cross-entropy, Lcls,
and mean-square error (MSE) loss terms, Lcreg and Lreg, for the
classification and regression branches, respectively. β controls
the weight between the losses from the two branches.α balances
the cross-entropy loss and the MSE of the classification-based
regression task in the classification branch. Lcreg minimizes the
MSE between the estimated classification-based T60 and the
ground truth T60. This composite loss also includes terms based
on Pearson’s correlation coefficient (PCC, ρ) and Spearman’s
rank correlation coefficient (SRCC, η), which are normally used
as evaluation metrics. | · | denotes the absolute value.

The proposed cost function for the joint network is:

LB
joint = γ ∗ [α× Lcls + (1− α)× Lcreg ] + (1− γ)Lderev

(5)
where γ ∈ [0, 1] controls the weight of two parts of the network,
α weighs the T60 estimation branches, and Lderev denotes the
MSE loss calculated in the dereverberation branch. From our
prior work on T60 estimation, the classification branch outper-
formed the regression branch, hence we use the classification
branch’s loss and the dereverberation loss to update the joint
network during fune tuning.

IV. EXPERIMENTS

A. Data

We train with the TIMIT corpus [44], which has been used
in prior studies [45], [46], where it contains 630 native English
speakers from eight regions of the United States. We randomly
select 5000, 500 and 500 signals to construct our training,
validation and testing datasets in simulated environments. All
6000 signals are downsampled to 8 kHz. We simulate RIRs for
14 different room dimensions by using the imaging method [47].
The dimensions for each room are listed in Table I. Rooms 1
through 10 are used to generate training and development, while
room 11 through 14 are used to generate the testing set. The
distance between the microphone and speaker is set to 1 m across
all cases to stabilize the direct to reverberation ratio (DRR) for
each condition. We select thirteen reverberation times: 0.3 s
to 1.5 s, with increments of 0.1 s to assess different levels of
reverberation. We use all thirteen reverberation times to pre-train
the T60 module, while we use three reverberation times: 0.3 s,
0.6 s and 0.9 s to pre-train the dereverberation block, which we
adopted from previous study settings [9], [13]. We use the same
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TABLE I
ROOM DIMENSIONS FOR RECTANGULAR SIMULATED RIRS

three reverberation times when fine-tuning the joint network.
Including more reverberation times to train theT60 module helps
with generalization. We simulate 500 different RIRs for each
T60 in the first 10 room settings, which are used to generate the
training dataset. Another 50 RIRs are simulated for each T60 for
validation. As a result, we have 10× 50= 500 RIRs for eachT60

in total for the validation set. For the testing rooms, we use 500
RIRs for each T60 and each room setting. As a result, we have 4
× 500 = 2000 RIRs for each T60 in the testing set. We convolve
each RIR with one unique speech signal for eachT60. As a result,
during pre-training for T60 estimation, we have 5000 × 13 =
65000 reverberant signals in the training set and 500×13=6500
reverberant signals in the validation set. During the pre-training
stage of the dereverberation block and the joint-learning stage,
we have 5000 × 3 = 15000 reverberant signals in the training
set and 500 × 3 = 1500 reverberant signals in the validation
and 2000 × 3 = 6000 in the testing set. We further generate
unseen non-rectangular rooms using Pyroomacoustics [48] im-
age source model/ray tracing (ISM/RT) simulator [49], [50]. We
simulate 3 L-shaped rooms with respective dimensions of: 8.5 m
× 3 m × 6 m and 2 m × 4 m × 6 m, 10 m × 5 m × 10 m and
3 m × 1.5 m × 10 m, and 7 m × 4 m × 10 m and 1.5 m ×
2 m × 10 m. The distance between the source and the speaker
is roughly 1.88 m. We simulate 200 RIRs for each room, which
results in a total of 200× 3 = 600 RIRs. We convolve each of
the RIRs with one signal from the TIMIT test set, resulting in a
total of 600 signals. The T60s range from 0.5 s to 1 s.

We zero pad the RIRs to match the longest RIR in the
dataset [26], and trim all clean signals to 6 seconds before con-
volution. The STFT is calculated using a 480-sample Hamming
window, 512-point FFT, and 75% overlap between successive
frames. The features have dimensions of 771×442.

We evaluate real environments with the ACE challenge [51]
and BUT Speech a©FIT Reverb corpora [52]. ACE uses RIRs
that were captured in real environments, where the reverberant
signals were generated by convolving the RIRs with clean
speech. The BUT corpus contains re-transmitted signals from
the LibriSpeech corpus [53]. These two corpora will show
the generalization capabilities of our approach in unseen and
real environments. The ACE dataset (Table II) contains seven
settings that include longer distances between the microphone

TABLE II
ROOM CHARACTERISTICS FOR REAL RIRS: ACE CORPUS

and the speaker, where the reverberation times range from 0.34 s
to 1.25 s. The BUT corpus contains five room settings with
respective dimensions of: 17.2 m × 22.8 m × 6.9 m, 4.6 m ×
6.9 m × 3.1 m, 7.5 m × 4.6 m × 3.1 m, 6.2 m × 2.6 m ×
14.2 m, 10.7 m × 6.9 m × 2.6 m, where reverberation times
range from 0.61 s to 1.85 s. The average distance between the
microphone and the speaker is from 1.41 m to 7.93 m for the
BUT corpus, so both the simulated and real environment dataset
have signals that differ from 1 m. The average distance ranges
from 1.35 m to 2.14 m for the ACE corpus. In total we have
1022 + 2620× 5 = 14122 reverberant signals in this testing
set.

B. Setup

In Fig. 2(b), 16 kernel filters are used for the first two Conv
layers, 32 kernel filters for the middle two Conv layers, and
64 kernel filters for the last two Conv layers. All kernel sizes
are set to 3 × 3, with 2 × 2 kernel sizes for all max pooling
layers. The average pooling layer in Fig. 2(c) uses a kernel size
of 3 × 3. Three fully connected (FC) layers are used in the T60

classification block. The first two FC layers are followed by a
BN layer with a leaky ReLU activation function with slopes set
to 0.1. The last FC layer also uses ReLU.

The dimensions for the input features to the dereverbera-
tion block are 257×442, which is the dimension of the com-
pressed magnitude. It is included with the T60 feature vector
during the fine tuning stage. For the LSTM in the derever-
beration block, the hidden size is set to 512, and the drop
out rate is 0.5 to avoid overfitting. We set β to 0.9, and α to
0.1 within LA (e.g., (4)), since these values outperform other
options.

All the pre-trained models use a batch size of 50 and a learning
rate of 0.001. However, different optimizers are applied to the
two tasks: RMSprop optimizer for T60 estimation and Adam
optimizer is used for dereverberation. For the joint-learning
network, we use the same optimizer and learning rate for the
two sub-networks, while the batch size is changed to 64. All the
models are trained using the standard backpropagation algorithm
for 100 epochs during the pre-training stage and 60 epochs
during fine-tuning. We experimented with different γ values
in the cost function of (5). We show results when γ = 0.2,
γ = 1 (update the weight matrix with only the T60 estimation
network loss), and when γ = 0.7 that slightly balances the loss
between the two sub-networks. We also provide results from
the dereverberation-only network that uses randomly initialized
LSTM states.
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TABLE III
DEREVERBERATION: FOUR SIMULATED ROOMS. � DENOTES PROPOSED APPROACH IS SIGNIFICANTLY HIGHER THAN THE FOUR BASELINE APPROACHES (T-TEST).

(·) DENOTES THE STANDARD DEVIATION

V. EVALUATION

A. Baseline Approaches and Evaluation Metrics

We evaluated our proposed approach with two main tasks: (1)
dereverberation and (2) T60 estimation. The following first pro-
vides details of the baseline approaches for the dereverberation
task and then for the T60 estimation task.

We implemented five baseline comparison approaches. The
first approach uses a statistical model-based approach, known
as weighted prediction error (WPE) that estimates an inverse
filter to remove the late reverberation from a given reverberant
signal [16], [17]. The second approach uses a LSTM to estimate
late reverberation [13] and subtracts that from the original signal
to produce the direct-early component. The third approach uses
a reverberation time-aware (RTA) DNN [21] and a context
window to directly estimate the magnitude of the anechoic
speech. Similarly, the fourth approach [23], called TeCANet,
uses a context aware input and a Full-Band based Temporal
Attention (FTA) approach, where the current frame is the key
and context frames are the query and value. TeCANet directly
predicts the anechoic magnitude and reconstructs the waveform
using the reverberant phase. We modify RTA and TeCANet so
that they predict the direct-early component, in order to make all
frameworks consistent for comparison. We lastly compare with
a dereverb only model from section III-B, where this model
differs from our proposed model by only providing magnitude
information as input and training the model to learn the magni-
tude of the direct-early component without knowing any room
acoustic information.

We evaluate dereverberation performance using the percep-
tual evaluation of speech quality (PESQ) [54], short-time objec-
tive intelligibility (STOI) [55], and the signal to distortion ratio
(SDR) [56]. The reference signal, in each case, is the direct-early
component of the reverberant signal.

We implement two T60 estimation comparison approaches:
(1) CNN [20] and (2) spectro-temporal modulation filtering and
a MLP [10]. Note that we did not apply data augmentation when
training the CNN. We use the log-mel spectrogram as the input
to the CNN, and the exact architecture as in [20]. For the MLP,
we use the Gabor 2D filters to extract the input, and a 3-layer
MLP for classification [10].

We compute the mean-square error (MSE), mean-absolute
error (MAE), Pearson’s correlation coefficient (PCC, ρ) and
Spearman’s Rank Correlation Coefficient (SRCC, η) between

the ground truth and the estimated T60. For MSE and MAE,
smaller values indicate better performance, whereas scores
closer to 1 are better for PCC and SRCC.

B. Results for Simulated Data

The results in Table III show that the overall performance
across the three metrics for our proposed approach is better than
all other comparison approaches, including the dereverb only
model, in simulated environments. When T60 = 0.3 s, there is
less reverberation, and it sounds almost clean to human ears,
which is evidenced by the high PESQ score (4.08) for the un-
processed reverberant signal. Our proposed approach produces
a gain of 0.18 for PESQ, a negligible STOI improvement, and an
overall SDR improvement of at least 0.52 dB, which is the largest
gain. Most of the comparison approaches failed to perform
dereverberation, where TeCANet generated a 0.07 PESQ gain.

With mild reverberation (T60 = 0.6 s), the proposed approach
improves PESQ by 0.73, while the best score from comparison
approaches improves PESQ by 0.48. The proposed approach
also provides the largest gain in STOI, which is approximately
0.027. However, for SDR, WPE outperforms all approaches with
an approximate gain of 3.77, which is only slightly higher than
our proposed approach. A likely reason that WPE performs
better for this T60 is that unsupervised learning predicts the
transition time that is appropriate at each T60, while the other
approaches assume a fixed transition time across all conditions,
and are optimized across the average. Without the appropriate
mixing delay, the models may introduce more distortions that
lower the SDR score.

At the longest reverberation time (T60 = 0.9 s), the proposed
approach produces the largest improvement according to all
three metrics, with improvement scores of 0.72, 0.0657 and 4.47
for PESQ, STOI and SDR, respectively. Overall, when averaging
scores across the threeT60s, the proposed system outperforms all
the comparison approaches, including the dereverb only model,
which provides evidence that additional T60 information helps
improve the dereverberation performance. We provide results
using less weight on the T60 estimation loss (γ = 0.2), and
heavier weight on the T60 estimation loss (γ = 0.7) and only
T60 estimation loss (γ = 1) during the finetuning stage of our
proposed method. The average score for PESQ and STOI are
quite stable even when γ = 1, and the average score of SDR
shows a subtle difference (0.14) when comparing γ = 0.2, 0.7
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TABLE IV
PERFORMANCE COMPARISON OF THE PROPOSED APPROACH FOR T60 ESTIMATION IN THE FOUR SIMULATED ROOMS

Fig. 4. Spectrograms for (left) the simulated reverberant signal (T60 = 0.9 s), (middle) the estimated direct-early signal, and (right) the ground truth direct-early
signal.

TABLE V
PERFORMANCE COMPARISON OF THE PROPOSED APPROACH FOR THE

DEREVERBERATION TASK IN THE NON-RECTANGULAR SIMULATED ROOMS

and 1. On average, our proposed approach provides the lowest
standard deviation for every evaluation metric, and all three
scores are (statistically) significantly better than all four baseline
approaches (p < 0.05, t-test) as well as the dereverb only model.

Table V shows the evaluation results for non-rectangular
rooms to further evaluate model generalization. We compare
our proposed model with WPE and the baseline approach with
highest performance in other simulation conditions, TeCANet.
Our model produces the largest gain with respect to PESQ, STOI
and SDR, where the respective improvements are 0.43, 0.111
and 2.22.

Table IV shows the evaluation results for T60 estimation after
the fine-tuning stage. We place more weight on the classification-
based regression subtask (e.g., α = 0.9 in (4)), and the overall
scores reflect that the jointly-trained model performs better on
classification-based estimation, and especially for MSE and
MAE. We compare our proposed system with two baseline
approaches. Bryan et al. [20] uses a CNN to estimate the
direct-to-reverberant ratio (DRR) and T60. Xiong et al. [10] es-
timate T60 based on spectro-temporal modulation filtering and a
DNN. The results show that our model outperforms the baseline
approaches. The classification branch where γ = 1 gives the

best MSE and MAE results, however, γ = 0.7 gives the best
performance in PCC and SRCC with the regression branch. The
MSE and MAE results are better in terms of classification-based
regression, but produce worse scores in terms of PCC and SRCC.
This likely happens because during joint learning, we only use
the classification branch with the MSE and cross-entropy loss
terms. Therefore, the proposed approach minimizes the MSE
and MAE, but this may negatively impact PCC and SRCC.

Fig. 4 shows the spectrograms of a reverberant signal, an
estimated output signal from our proposed approach, and the
ground truth of the direct-early reference signal. The magnitude
of the reverberant signal is quite blurry and distorted, especially
in the high frequency band that is smeared by the reflections
(particularly, the late reflections). This is evidenced by the
difficulty in seeing the silent periods between each word. Fig. 4
(middle) shows the estimated direct-early component from our
proposed system, which is highly similar to the ground truth
(right), where reverberation is clearly removed in between the
words (see the white bounding box in Fig. 4 (middle)). However,
some of the high frequencies are still smeared by late reflections
(see the red bounding boxes).

C. Results for Real Data

Although our approach produces improvements in the simu-
lated testing environments, we still need to perform tests using
real RIRs and signals to determine if our proposed approach
is robust and generalizes to real environments. As discussed
in section IV.A we evaluate real performance using the ACE
challenge dataset [51] and the BUT Speech@FIT reverberation
corpus [52]. The ACE challenge dataset has the clean speech
signal instead of the direct-early component as the reference.
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TABLE VI
PERFORMANCE COMPARISON OF THE PROPOSED APPROACH IN TERMS OF PESQ USING THE REAL REVERBERANT ACE CORPUS. − MEANS THE SAME AS IN

DIRECT SOUND

This means that the degraded signals are compared to the clean
signal as opposed to the direct-early signal, which will result in
lower scores. Additionally, each real room has different objects,
which may also result in lower PESQ scores.

For a more precise comparison, we ran two experiments: (1)
predicting the direct-early component as in Section III-C and (2)
modifying our training target to the direct sound, and retraining
our model with simulated training set. For the other deep learning
based comparison approaches, we retrain the model for the direct
sound target. It is worth noting that the direct sound has a time
delay compared with the clean signal, so the reference signal
is not time aligned, which will lower certain scores (e.g., STOI
and SDR). We are unable to modify WPE that estimates the
direct-early component, since it is a unsupervised approach. We
use the same network architecture from section V-B and train
using 15000 simulated signals with three T 60 s: 0.3 s, 0.6 s and
0.9 s.

Table VI shows the average PESQ scores when predicting
the direct sound and the direct-early component for each room
when using the real RIRs from the ACE dataset. For the direct-
early component estimation, our proposed approach shows the
greatest gain for five out of seven rooms. The average PESQ
score improvement of our proposed system outperforms all other
approaches. For direct sound estimation, the overall scores for
deep learning based approaches are better. Specifically, our pro-
posed approach, WPE, LSTM RTA and TeCANet show PESQ
improvements, but our proposed approach shows the greatest
gain for every room (e.g. 0.34 in Office 1) amongst all the
approaches. Additionally, we randomly selected four out of the
seven rooms in the ACE corpus for fine-tuning with real data. We
then evaluate performance with the remaining three rooms. The
last row shows the PESQ scores for the three testing rooms after
fine-tuning. The results show significant PESQ improvement
compared to previous model in both direct sound estimation
and direct-early component estimation. WPE and our proposed
approach performed best and nearly identical in terms of STOI
(0.83) and SDR (12 dB).

Table VII shows the average scores when predicting the direct
sound using the BUT Speech a©FIT Database after fine-tuning
with real data. We fine-tuned the model by randomly selecting
three of the five rooms for training, and the remaining two for
testing. Our proposed approach performed best on average SDR
score with the largest gain 1.66. WPE performed best according
to PESQ and STOI, but these results are comparable to ones

TABLE VII
PERFORMANCE COMPARISON OF THE PROPOSED APPROACH (DIRECT SOUND

ESTIMATION) FOR THE DEREVERBERATION TASK APPLIED TO REAL

REVERBERANT SPEECH FROM THE BUT SPEECH A©FIT CORPUS

TABLE VIII
PERFORMANCE COMPARISON OF THE PROPOSED APPROACH (DIRECT SOUND

ESTIMATION) IN TERMS OF DNSMOS ON THE REAL REVERBERANT SPEECH OF

THE ACE CORPUS

from our proposed approach. Note that the overall scores are
lower for this corpus, which speaks to the difficulty of removing
reverberation in real environments.

Additionally, we use a multi-stage data-driven perceptual ob-
jective metric known as the Deep noise Suppression Mean Opin-
ion Score (DNSMOS) to evaluate our proposed dereverberation
estimation approach for real reverberant speech in Table VIII.
DNSMOS uses machine learning to estimate human-evaluated
MOS [57]. The results show the DNSMOS score for the ACE
corpus after the fine-tuning stage with real environment data. Our
proposed approach shows the greatest gain of 0.1, 0.13 and 0.26
with respective of Lobby, Meet 2 and Office 2. This indicates
that our approach is also best according to human evaluators.

VI. DISCUSSION

A. Results on Different Weight Parameter γ

From Tables III and IV, we provide proposed approach results
for different γ values in simulated unseen rooms for the dere-
verberation and T60 estimation tasks. For the dereverberation
task, when γ = 0.7, the proposed approach performs best for
both PESQ and STOI scores, and when γ = 0.2, the proposed
approach performs the best on SDR whenT60 = 0.3 s. However,
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the overall results from different γ values did not show much
difference between each other, where the largest gain is 0.01 for
PESQ, 0.09 for SDR when T60 = 0.3 s, and 0.0029 for STOI
whenT60 = 0.9 s. These slight differences according to the three
evaluation metrics indicate that T60 features are more crucial
to improving dereverberation performance, than the fine-tuning
stage regardless of the T60 estimation loss included during the
back propagation process.

Different patterns are found for the T60 evaluation scores
in Table IV. For the pure-regression task, the scores change
dramatically for different γ values across the four different
metrics. However, classification-based regression benefits from
joint learning due to parameter sharing for the related tasks of
room acoustic estimation and dereverberation. This is especially
evident in Table IV, where our proposed approach provides
the best scores overall and shows the ability to generalize. The
results in Table IV also explain why we we use the classification
branch instead of the regression branch for the joint-learning
connection, since the results show that the classification branch’s
outputs are more reliable.

B. Incorporating T60 Information

Section III-B describes our direct-early component estimation
(dereverb only) model. The idea is similar to LSTM [13], where
we randomly initialize the hidden and cell states. This dereverb
only model does not have prior information of the room char-
acteristics, and the results from Table III show that it is more
difficult to perform dereverberation as T60 increases, without
this room environment information. One way to incorporate
the room characteristics is to provide T60 information during
the training stage (RTA) [21], where a pair of parameters (e.g.,
frame shift and context window size) are provided as additional
inputs. Theses parameters influence the STFT calculation for
the input signal and the resulting feature size. During training,
the network is provided with different input features based
on the T60, where the extra information allows the network to
more accurately learn the anechoic speech. As for the testing
stage, this method requires an external T60 estimator and a
lookup table to determine the corresponding frame shift and
context window size. This approach shows that T60 is necessary
and even helpful for dereverberation, however, the external T60

estimator is not part of the overall network, which could be
sub-optimal.

In order to find the optimal T60 information, we also inves-
tigated other experiments in which we pass the classification
results or the T60 estimation results as inputs to the dereverb
module. Those results are not comparable to RTA, which shows
that this information is not as helpful to dereverberation perfor-
mance. Our proposed approach, on the other hand, addresses
this by learning important T60 features and providing them
to the dereverberation network through a skip connection. By
comparing the results from RTA, our proposed approach, and the
dereverb only model in Table III, the three approaches respec-
tively produce average PESQ improvements of 0.24, 0.54 and
0.33, STOI improvements of 0.0017, 0.031 and 0.0191, and SDR
improvements of 1.51, 2.78 and 1.6 dB over the unprocessed

Fig. 5. Visualization of the T60 classification feature representations using
t-SNE on the simulated training data.

signal. The results indicate that the prior information provides
different contextual information and an alternative input feature
that is beneficial to performance. We surmise that this occurs
because the features from the reverberation time estimation
help distinguish between different levels of reverberation. In
Fig. 5, we use t-SNE to visualize the output of the penulti-
mate layer from the T60 classification block. The T60 features
from the pre-trained module are clustered together according
to reverberation time, which could be a key identifier for the
direct-early component estimation module. t-SNE visualizations
provide similar results when used for other self-supervised
algorithms [43].

C. Limitations and Future Work

Section V discussed the performance of the results based on
the proposed model that trained with simulated data. Although
the performance was significantly higher than the baseline ap-
proaches (p < 0.05, t-test) on simulated test data, one limitation
that needs to be addressed is appropriately leveraging real envi-
ronment data. With simulated data, we can generate a balanced
and large dataset to meet requirements for deep learning. With
real data, however, we generally do not have enough data since
recordings often do not have the corresponding ground truth
signal or acoustic parameters that are needed for a supervised
approach. Furthermore, our proposed approach is based on how
well the T60 module produces valid T60 features. However, for
real environments, the T60s are often unseen, which negatively
impacts T60 class prediction.

Our proposed approach provides T60 features to the dereverb
module for further accurate dereverberation. However, the rever-
berant training data is generated with the image source method,
which finds the path length and pressures of purely specular
reflections and has limitations on modelling diffuse reflections
that could occur in late reflections. Based on this property of
simulated data, our model has been limited to learn the RIR
information with inaccurate fuse reflections, which negatively
impacts real-world testing.
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Instead of estimating T60 directly from reverberant speech
itself, we could address the dereverberation problem with
visual-only data [58], [59] or audio-video data [60], [61]. For
a 3D video, the video will contain the corresponding room
environment characteristics, such as room dimensions, the
positions of microphone and the speaker, and objects in the
room that cause the reflections. This information could provide
key indicators of the acoustic characteristics. With accurate
room information, we have a better chance to estimate the T60,
and our proposed model could benefit from this with carefully
designed embedded features.

VII. CONCLUSION

In conclusion, we propose a joint-learning network that inte-
grates T60 estimation information into a dereverberation module
to enhance reverberant signals. In particular, we provide the
penultimate output of the T60 estimation module, which serves
as a reverberation time feature, along with the compressed
magnitude to the dereverberation network. Most importantly, the
results show significant improvements in both objective speech
quality and intelligibility when providing the T60 features to the
joint network, where we produce gains in simulated and real
environments.
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