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ABSTRACT

Speech enhancement has greatly benefited from deep learn-
ing. Currently, the best performing deep architectures use
long short-term memory (LSTM) recurrent neural networks
(RNNs) to model short and long temporal dependencies.
These approaches, however, underutilize or ignore spectral-
level dependencies within the magnitude and phase re-
sponses, respectively. In this paper, we propose a deep
learning architecture that leverages both temporal and spec-
tral dependencies within the magnitude and phase responses.
More specifically, we first train a LSTM network to predict
both the spectral-magnitude response and group delay, where
this model captures temporal correlations. We then introduce
Markovian recurrent connections in the output layers to cap-
ture spectral dependencies within the magnitude and phase
responses. We compare our approach with traditional en-
hancement approaches and approaches that consider spectral
dependencies within a single time frame. The results show
that considering the within-frame spectral dependencies leads
to improvements.

Index Terms— speech enhancement, intra-spectral cor-
relations, recurrent neural networks, long short-term memory

1. INTRODUCTION

Monaural speech enhancement is a challenging task that aims
to remove unwanted background noise from a single audio
channel, to improve perceptual speech intelligently and qual-
ity. Deep learning has resulted in improved performance, but
additional improvement is needed in noisy environments.

Speech enhancement generally takes two forms, mask-
based approaches or signal approximation. In mask-based
approaches, a time-frequency (T-F) mask is approximated
that acts as a filter to remove the noise. Various masks have
been proposed, including the ideal binary mask (IBM) [1]
and ideal ratio mask (IRM) [2]. In [3], it is shown that
estimating the ideal ratio mask outperforms other T-F mask-
ing and signal approximation approaches. Since then, ra-
tio masks have incorporated phase information, e.g., the
phase-sensitive mask (PSM) [3], complex ideal ratio mask

(cIRM) [4] and parametric complex-valued T-F mask [5]. Al-
ternatively, signal approximation directly estimates the clean
speech signal in either the time [6] or T-F domains [7, 8].
A variety of network architectures have been used, includ-
ing, DNNs [3, 7, 8], autoencoders [9, 10], long short-term
memory (LSTM) networks [7, 11], and convolutional neu-
ral networks (CNNs) [12]. More recent approaches use deep
clustering (DC), which groups learned activations into classes
(e.g. speech dominant or noise dominant), to form a binary
mask (BM) [13]. In [14], an end-to-end model that uses an
utterance-based objective function shows promising results
and it preserves high and low-frequency spectral information.

In the above approaches, the approximated T-F output
is based on prior network layers and prior (in time) outputs
of that T-F unit. The output, however, is not based on the
adjacent or nearby frequency points within the magnitude
response. It is known, however, that speech has spectral
dependencies along the frequency axis [15], but current ar-
chitectures often ignore these correlations. Recently, two
approaches have been developed to address frequency-level
dependencies, but they have only been evaluated for au-
tomatic speech recognition [16] or audio restoration after
coding [17]. Both approaches use dedicated LSTM modules
to learn spectral dependencies, but this is either done at the
subband frequency-level or overall time. Additionally, these
approaches do not consider local spectral dependencies over
short-time instances. Nevertheless, these approaches have
shown that incorporating spectral dependencies offers notice-
able improvements, but it is not clear if this will have the
same impact on speech enhancement.

We propose an intra-spectral (e.g. across-frequency) re-
current layer that captures frequency dependencies within
each time frame of a speech signal. Given a noisy speech
input, a LSTM network with multiple target loss functions
learns the temporal dependencies of speech. We then ap-
pend the proposed intra-spectral recurrent layer to enforce
spectral-level dependencies. Our preliminary work showed
that incorporating spectral-level dependencies within the
magnitude domains leads to noticeable improvements [18].
In this work, we also incorporate spectral-level dependencies
within the phase response, by applying an intra-spectral re-
current layer to the group delay of the signal. This is done
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because multiple studies have shown how phase is important
to signal quality. To the best of our knowledge, magnitude
and phase-level dependencies have not been investigated for
monaural speech separation with deep learning.

The rest of the paper is organized as follows. Conven-
tional deep learning-based speech enhancement is discussed
in section 2. In section 3, we describe our proposed intra-
spectral bi-directional recurrent (ISBR) layer. The experi-
mental setup is provided in section 4 and results are discussed
in section 5. We conclude in section 6.

2. MAGNITUDE AND PHASE INFORMATION FOR
SPEECH ENHANCEMENT

Let’s define St,k as the T-F domain speech signal at time
t and frequency k, which is computed using the short-time
Fourier transform (STFT). Correspondingly, St,k has a mag-
nitude response, |St,k|, and a phase response, θSt,k, where

St,k = |St,k|eiθ
S
t,k . Similarly, Nt,k is the STFT of the noise

signal with magnitude |Nt,k| and phase response, θNt,k.
Speech enhancement systems often enhance the magni-

tude response of noisy speech, |Mt,k|, in order to produce an
estimated clean version, |Ŝt,k|. They often find the best esti-
mate of clean speech and noise by minimizing the following
loss function [19]:

Lmag =
∑
t,k

(
|Ŝt,k| − |St,k|

)2
+
(
|N̂t,k| − |Nt,k|

)2
(1)

2.1. Group delay loss function

Phase enhancement has been shown to be important for
speech quality [11, 4]. Unlike the magnitude response (Fig-
ure 1(a)), the phase of a speech does not show a clear struc-
ture (Figure 1(b)). On the other hand in Figure 1(c), group
delay [20] of a speech shows a learn-able pattern in log-
magnitude formulation. Therefore, instead of phase approx-
imation, group delay (GD) approximation can show better
success [19]. The group delay of signal St,k is computed as
GDS

t,k = 6 ei(θ
S
t,k+1−θ

S
t,k).

A mixture can be defined as a combination of two sound
sources, which in our case are speech S and noise N . We
can denote each of them as χ ∈ {S,N} where χ refers to
a single sound source and ¬χ defines the other sound within
the mixture signal. To incorporate group delay into signal
approximation, a magnitude weighted cosine distance is used
as the loss function:

Lgd =
∑

χ∈{S,N}

∑
t,k

|χt,k+1|
(1− cos(ĜD

χ

t,k −GDχ
t,k))

2
(2)

where GDχ
t,k and ĜD

χ

t,k are the unwrapped group delay and
approximated group delay of a signal, either speech or noise.

(a) Clean magnitude (b) Clean phase

(c) Clean group delay

Fig. 1: Magnitude, phase and group delay of a clean signal.
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Fig. 2: Baseline LSTM architecture.

3. PROPOSED APPROACH

Signal-based speech enhancement needs to learn both tem-
poral and spectral information to fully capture the structure
(magnitude and phase) of the speech. To utilize the temporal
information, a recurrent network that unrolls along the time
axis is very effective. Since a LSTM is a recurrent deep net-
work that can learn both short- and long-term temporal infor-
mation, we use a LSTM network to learn the temporal infor-
mation first. Then to learn the spectral dependencies among
individual frequencies, we propose another recurrent archi-
tecture that captures the correlation among frequencies using
a Markovian connection across the frequency axis of a single
time frame. This recurrence is confined in the output layer of
the pre-train LSTM network.

3.1. Long short-term memory (LSTM) architecture

In Figure 2, we show our proposed LSTM network which
takes the magnitude of the mixture |Mt,k| and the group de-
lay of the mixture GDM

t,k as the inputs. The output layer of
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the network is branched in two ways, one is for magnitude
approximation χ̂t,k and another is for group delay approxi-
mation ĜD

χ

t,k of both speech and noise. In other words, the

outputs of the network are Ŝt,k and ĜD
S

t,k of enhanced clean

speech, and N̂t,k and ĜD
N

t,k of approximated noise. We re-
construct the phase of speech from the group delay using the
trigonometric constraint, which gives an enhanced phase pair.
We then estimate the phase difference between the enhanced
speech and noise using:

δ̂χt,k = | 6 ei(θ̂
χ
t,k
−θ¬χ

t,k
)|

= arccos

(
T
( |Mt,k|2 + |χt,k|2 − |¬χt,k|2

2|Mt,k| ⊗ |χt,k|

))
(3)

where χ ∈ {S,N}, T (·) truncates values to [−1, 1] and ⊗
denotes element-wise multiplication. Then, the sign of each
T-F unit, ĝt,k ∈ {−1, 1} is calculated by [19]:

ĝt,1, · · · , ĝt,K = argmax
gt,1,··· ,gt,K

∑
k

∑
χ∈{S,N}

cos
(
θ̂χt,k+1(gt,k+1)

− θ̂χt,k(gt,k)− ĜD
χ

t,k

)
(4)

Here by the formulation of trigonometric property of group
delay, θ̂χt,k(gt,k) = θMt,k + γgt,k δ̂

χ
t,k, with γ = 1 when χ = S

and γ = −1 when χ = N . Using dynamic programming
within each frame, we can solve equation (4). The overall
loss function of our LSTM network with hyper parameter λ
is defined as:

Lmag+gd = λLmag + (1− λ)Lgd (5)

This LSTM network will learn the temporal mapping func-
tion between mixture to clean speech conditioning on both
magnitude and phase information. However, this architecture
does not consider the spectral axis connections to capture the
dependencies among frequencies. For that reason, we use an
intra-spectral layer over this LSTM network.

3.2. Intra-spectral Bi-directional Layer (ISBR)

Our proposed spectral recurrent layer captures intra-spectral
correlations with a first-order Markov assumption. This layer
models the frequency dependencies as a function of the ad-
jacent spectral components. A Markov chain-like recurrent
structure learns the spectral dependencies from low to high
(increasing) and high to low (decreasing) frequencies. This
is done along the entire frequency axis, and a depiction is
shown in Fig. 3. This recurrent layer is denoted as an intra-
spectral bi-directional recurrent (ISBR) layer. Each neuron of
the layer represents a frequency bin of the signal.

The ISBR output layer uses the output of the prior LSTM
network, aL−1t , as input. The spectral output vector of the
ISBR layer is denoted asψt. The individual spectral response
at a corresponding frequency bin is denoted as ψk,t, where k

Fig. 3: Depiction of the proposed Intra-spectral bi-directional
recurrent (ISBR) recurrent layer.

indexes the frequency axis. Outputs from the ISBR layer are
computed as follows:

∆ = σ(RLaL−1
t + βL) (6)

ψ1,t = ∆1 + σψ(w1,2 × ψ2,t)

+ σψ(w1,1 × ψ1,t−1) (7)

ψnL,t = ∆nL + σψ(wnL,nL × ψnL,t−1)

+ σψ(wnL,nL−1 × ψnL−1,t) (8)

ψk,t = ∆k + σψ(wk,k+1 × ψk+1,t)

+ σψ(wk,k−1 × ψk−1,t), k ∈ [2, nL − 1] (9)

where ∆ is the vector of activations, {∆1, . . . ,∆nL}, based
on inputs from the prior LSTM layer,RL ∈ IRnL×nL−1

is the
weight matrix, and βL ∈ IRnL is the bias vector. wk,k−1 rep-
resents the weight from the (k− 1)st to kth frequency compo-
nent where aswk,k+1 represents the weight from the (k+1)st

to kth frequency component, within the recurrent output layer.
σ and σψ are the activation functions for the feed-forward and
recurrent paths. Activation functions are applied separately to
the feed-forward and recurrent paths, since this is similar to a
logistic regression-based network, which has performed well
for other tasks. The final output is therefore ŷt = ψLt , which
is the enhanced spectrum of the tth time frame.

In our proposed LSTM network, we have 4 output lay-
ers in a parallel manner (see section 3.1). We first train our
LSTM model with dense output layers because this will cap-
ture the temporal correlations in magnitude and phase struc-
tures. Then we replace the dense output layers with our pro-
posed ISBR layer and retrain the network. This will learn the
spectral relationships among the adjacent frequencies, which
was absent in temporal training.

4. EXPERIMENTAL SETUP

We evaluate our proposed approach using the IEEE [21] and
the TIMIT [22] speech corpora. The IEEE corpus consists
of 720 utterances from a single male speaker and the TIMIT
corpus has 6300 utterances from multiple male and female
speakers. Three non-overlapping sets of 50, 11 and 18.3 hrs
are developed for the training, cross-validation, and testing
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Fig. 4: PESQ scores for seen, unseen and overall SNR condi-
tions for the IEEE corpus.

sets, respectively. The training and validation data is gener-
ated at -3, 0, and 3 dB signal-to-noise ratios (SNRs) using
four noise types (speech-shaped noise, cafeteria, factory, and
babble). We test with two additional SNRs (-6 and 6 dB),
which are unseen by the model. All the signals are sampled at
16 kHz. The spectrogram is generated using a 640-point DFT
with a Hann window of 40ms and a 20ms frameshift.

Our baseline LSTM network has a single LSTM layer of
256 cells, a time-distributed dense layer (321 units) and four
separate output layers (one for each target) in parallel. The
rectified linear (ReLU) function is used as the activation func-
tion for the two output layers that predict the clean and noise
magnitude spectrograms. A linear activation function is used
in the dense layer and the two output layers for predicting
group-delay of the speech and noise signals. A sigmoid lo-
gistic function is used for the gate activation function, while
hyperbolic tangent functions are used for the cell and hidden
states. Batch normalization is performed between each layer.
Adam optimization is used with momentum with the learn-
ing rate of 0.001. We use Xavier initialization to initialize the
model. In the loss function, λ is set to 0.975. In our proposed
approach, the output layer of the LSTM network is replaced
by the ISBR layer (321 units), and the model is retrained. We
denote our approach as ISBRmag+gd.

We compare our approach against approaches that en-
hance only the magnitude of speech. In L-Stackmag model [17],
prediction from a time LSTM (T-LSTM) and a frequency
LSTM (F-LSTM) are stacked together to predict enhanced
magnitude. L-FTmag [16] uses a F-LSTM to summarize fre-
quency information in a super vector by scanning frequency
sub-bands of a time frame. Then a T-LSTM layer uses this
super vector to learn temporal dependencies. To evaluate
the effectiveness of the ISBR layer, we compare our proposed
ISBR output layer to our prior approach that uses a LSTM that
is trained with the Lmag cost function (e.g., no group delay)
[18]. This is denoted as L-ISBRmag. Additionally, we define
our baseline LSTM network with traditional dense layers as
an output layer and denote this network as LSTMmag+gd (e.g.,

Table 1: Average scores for each approach. Best results are
shown in bold.

IEEE corpus TIMIT corpus
PESQ STOI SI-SDR PESQ STOI SI-SDR

Mixture 1.86 0.62 -1.47 1.58 0.51 -2.33
L-Stackmag [17] 2.02 0.59 -0.59 1.82 0.5 -0.84

L-FTmag [16] 2.05 0.6 -0.2 1.88 0.52 -0.26
L-ISBRmag [18] 2.24 0.64 0.22 1.93 0.52 -0.03

LSTMmag+gd 2.24 0.64 0.12 1.97 0.53 0.1
ISBRmag+gd 2.34 0.67 0.92 2.04 0.58 0.84

PC-tf-Mmag+phase[5] 2.31 0.67 0.85 2.04 0.58 0.72
PSMmag+phase[11] 2.27 0.65 0.4 2 0.56 0.32

no ISBR layer). We compare two masking-based approaches
[11, 5] because in general, the mask-based approaches have
shown superior performance in speech enhancement, when
compared to signal approximation approaches. A phase-
sensitive filter is approximating in [11]. We denote this
approach as PSMmag+phase. Additionally, [5] proposes a para-
metric complex-valued T-F mask to estimate magnitude and
phase through a joint learning network. We call this network
PC-tf-Mmag+phase. All the approaches are evaluated with three
commonly-used objective metrics, namely, the Perceptual
Evaluation of Speech Quality (PESQ) [23], the short-time
objective intelligibly (STOI) [24] and the scale-invariant
speech distortion ratio (SI-SDR) [25, 26].

5. RESULTS

In Figure 4, we compare the performance scores of all the
models across different SNR conditions. Evaluating the
IEEE dataset with PESQ, our proposed ISBRmag+gd shows
the best performance among all the models in seen (-3,0,3
dB), unseen (-6,6 dB) and overall SNRs on average. Addi-
tionally, L-ISBRmag shows big improvements among all the
magnitude-based approaches. In Table 1, we compare the
performance of the models in a single speaker (IEEE corpus)
and multiple speakers (TIMIT corpus) scenario. ISBRmag+gd
shows the best performance in all performance metrics. How-
ever, PC-tf-Mmag+phase shows good performance and is tied
with ISBRmag+gd multiple times, especially for the TIMIT
corpus. It is important to note that our signal approximation
approach outperforms the T-F masking approaches, which in-
dicates that incorporating spectral-level magnitude and phase
dependencies are beneficial.

6. CONCLUSION

Our proposed output layer with a base LSTM network suc-
cessfully captures the temporal and spectral level dependen-
cies in the magnitude and phase domains. The results show its
superiority over traditional approaches and robustness on un-
seen noise and data. This model, however, considers only the
first-order Markovian assumption. In the future, we will ex-
plore higher-order spectral dependencies along with sub-band
spectral dependencies in a single time frame.
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