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Abstract—Perceptually-inspired objective functions such as the percep-
tual evaluation of speech quality (PESQ), signal-to-distortion ratio (SDR),
and short-time objective intelligibility (STOI), have recently been used to
optimize performance of deep-learning-based speech enhancement algo-
rithms. These objective functions, however, do not always strongly correlate
with a listener’s assessment of perceptual quality, so optimizing with these
measures often results in poorer performance in real-world scenarios. In
this work, we propose an attention-based enhancement approach that
uses learned speech embedding vectors from a mean-opinion score (MOS)
prediction model and a speech enhancement module to jointly enhance noisy
speech. The MOS prediction model estimates the perceptual MOS of speech
quality, as assessed by human listeners, directly from the audio signal.
The enhancement module also employs a quantized language model that
enforces spectral constraints for better speech realism and performance. We
train the model using real-world noisy speech data that has been captured in
everyday environments and test it using unseen corpora. The results show
that our proposed approach significantly outperforms other approaches
that are optimized with objective measures, where the predicted quality
scores strongly correlate with human judgments.

Index Terms—Attention model, deep learning, speech assessment, speech
enhancement, speech quality, speech quantization.

I. INTRODUCTION

Monaural speech enhancement aims to remove unwanted noise from
an audio signal that contains speech using only a single microphone
channel. Enhancing the quality of noisy speech is crucial for appli-
cations such as speech recognition, speaker verification, hearing aids,
and hands-free communication. Speech enhancement approaches are
generally divided into two categories: mask-based or signal-based ap-
proximation. A time-frequency (T-F) mask is estimated in mask-based
approaches, where the mask filters unwanted noise from noisy speech
mixtures. Early mask-based approaches estimate the ideal binary mask
(IBM) [1] or the ideal ratio mask (IRM) [2], while recent approaches
estimate the phase-sensitive mask (PSM) [3] or complex ideal ratio
mask (cIRM) [4], [5] to enhance both the magnitude and phase. The
ideal quantized mask (IQM) has recently been proposed [6], where each
T-F unit of the IRM is assigned to a quantization level according to its
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signal-to-noise ratio. It has been shown to be a reasonable representation
of the IRM as assessed by human listeners, however, estimation of the
IQM and its subsequent noise removal has not be thoroughly evaluated.

Signal approximation can be done in either the time [7], [8] or the
T-F domains [9], where the approach directly estimates the time or
T-F domain signal from a noisy speech representation. Traditionally,
T-F masks produce better objective quality and intelligibility compared
to direct signal approximation, mainly because masks are normalized
and bounded with limited speaker variations, which makes them easier
to learn. Also, masks directly modulate the mixture signal in the T-F
domain. In recent years, the signal approximation models outperform
mask estimation approaches in speech intelligibility [9], [10] when
applied with appropriate normalization.

Regardless of the approach, recent developments in deep learning
have resulted in state-of-the-art performance. A wide range of deep
learning architectures have been proposed, including, deep neural net-
works (DNNs) [11], [12], autoencoders [13], [14], [15], long short-term
memory (LSTM) networks [3], [16], convolutional neural networks
(CNNs) [8], [17], [18], [19], [20], and generative adversarial networks
(GANs) [21], [22], [23]. Deep recurrent networks have proven to be ef-
fective, especially compared to fully-connected DNNs, as they capture
temporal correlations. CNNs are good at feature extraction, and they
have been combined with recurrent networks to capture the short and
long-term temporal and spectral correlations. Recently, attention-based
deep architectures have been proposed with the motivation that a train-
ing target only greatly influences a few regions of the input, where the
focal regions change over time. [24], [25] use attention mechanism with
an U-Net [26] architecture for both time and spectral domain speech
enhancement. [27], [28] successfully use self-attention to estimate a
speech spectrum and T-F mask, respectively. This approach is more
intuitive for speech enhancement, because humans are able to focus on
the target speech with high attention while paying less attention to the
noise.

Deep-learning-based speech enhancement approaches traditionally
use the mean square error (MSE) between the short-time spectral-
amplitudes (STSA) of the estimated and clean speech signals to op-
timize performance. This is done due to the computational efficiency
of the MSE loss function. However, the MSE tends to produce overly-
smoothed speech and it is not always a strong indicator of perfor-
mance [29], [30]. Thus, many studies have begun to optimize algorithms
using perceptually-inspired objective measures.

Multiple studies have used short-time objective intelligibility
(STOI) [31] to optimize enhancement algorithms and to improve speech
intelligibility [32], [33], [34]. This is done to minimize the incon-
sistency between the model optimization criterion and the evaluation
criterion for the enhanced speech. The reported results in [33] show that
jointly optimizing with STOI and MSE improves speech intelligibility
according to both objective and subjective measures. In addition, word
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accuracy according to automatic speech recognition (ASR) is improved.
Perceptual evaluation of speech quality (PESQ) [35] scores, however,
have not increased when optimizing with STOI, as reported in [33]. The
signal-to-distortion ratio (SDR) [36] has also been used as an objective
cost function [37]. The proposed network is pre-trained with a SDR
loss to achieve network stability and later optimized with a PESQ
loss in a black-box manner. Their results show that optimizing with
SDR leads to overall objective quality improvements. Unlike SDR and
STOI, PESQ cannot directly be used as an objective function since
it is non-differential. Reinforcement learning (RL) techniques such
as deep Q-network and policy gradient have thus been employed to
solve the non-differentiable problem [34], [38]. In these works, PESQ
and the perceptual evaluation methods for audio source separation
(PEASS) [39], [40] serve as rewards that are used to optimize model
parameters. Meanwhile, a new PESQ-inspired objective function that
considers symmetrical and asymmetrical disturbances of speech signals
has been developed in [41]. Quality-Net [42], which is a DNN approach
that estimates PESQ scores given a noisy utterance, has also been used
as a maximization criteria [43] and as a model selection parameter [44]
to enhance speech.

It is worth noting that optimizing with perceptually-inspired ob-
jective measures has been disputed in [45], [46], where these latter
results show that a MSE objective function is sufficient. This may occur
because objective measures of success do not always strongly correlate
with subjective measures [39], [47], [48], [49]. Hence, it is inconclusive
as to whether perceptually-inspired objective measures are generally
useful at optimizing speech enhancement performance, so alternative
strategies for incorporating perceptual feedback may be needed.

Subjective evaluations from human listeners remains the gold-
standard approach since it results in ratings from potential end-
users. These evaluations often ask listeners to either give relative
preference scores [50] or assign a numerical rating [51]. Multiple ratings
are provided for each signal, where they are averaged to generate a
mean-opinion score (MOS). Recently, deep-learning approaches have
effectively estimated human-assessed MOS [52], [53], [54], [55]. These
approaches are promising since they can provide strongly correlated
quality scores for new signals. According to [56], a non-intrusive loss
function can lead to improved noise suppression. Conversely, [57]
proposes using embedding vectors from a multi-objective speech as-
sessment model for speech enhancement, but they only use intru-
sive metrics such as PESQ, STOI, and a speech distortion index
(SDI) to train the speech assessment model. As a result, it remains
unclear whether a speech assessment model that predicts MOS can
incorporate human perceptual information into a speech enhancement
model. Joint learning has been successfully applied in speech enhance-
ment to optimize between estimating speech and other training targets,
such as phoneme classification [58], speaker identification [59], and
speech recognition [22]. Our preliminary work has recently combined
a speech quality estimation task with speech enhancement [60] and it
shows promising results. In this work, we propose an attention-based
speech enhancement model that uses the embedding vector from a MOS
prediction model to produce speech with improved perceptual quality.
The MOS estimator generates encoded embedding vectors that contain
perceptually useful information that is important for human-based
assessment. Our speech enhancement attention model is conditioned
on that embedding vector and enhances the noisy speech using a
separate encoder-decoder framework, which should help produce better
quality speech according to human evaluation. In the enhancement
stage, we incorporate a quantized spectral language model that captures
the transitions probabilities across the T-F spectrum. The LM helps
ensure that the resulting speech spectra exhibit realistic spectral- and
temporal-fine structure that occurs within real speech signals, since

it identifies the most likely spectrum in each time frame. This is
accomplished by first quantizing the speech magnitude spectra into
distinct classes. Our proposed signal approximation approach jointly
updates both the MOS-prediction and speech-enhancement models
during training, using speech enhancement and MOS prediction loss
terms.

The rest of the paper is organized as follows. In Section II, we intro-
duce the quality assessment model, the proposed enhancement model,
and the quantized spectral language model. We describe our dataset
and experimental setup in Section III. In Section IV, we evaluate our
proposed approach and compare it with other state-of-the-art models.
We discuss the implication and significance of our work in Section V.
Finally, we conclude our work in Section VI.

II. PROPOSED APPROACH

A depiction of our approach is shown in Fig. 1. The model consists
of a MOS prediction model (shown left) and a speech enhancement
model (shown right). Our MOS prediction model is tailored to provide
estimates for subjective-MOS (as rated by humans), and going forward,
we will use MOS to refer to subjective-MOS unless explicitly stated
otherwise, for ease of understanding. We next will provide notation and
then describe each of these sub-modules.

A. Notation

We define a clean speech signal as st and background noise as nt

at time t. The mixture of clean speech and noise is denoted as mt =
st + nt. We aim to extract the speech from the mixture by removing the
unwanted noise. The short-time Fourier transform (STFT) converts the
time-domain mixture into a T-F representation, Mt,f , that is defined at
time t and frequency f . The complex-valued STFT matrix, M , can be
written as M = |M |eiθM

with magnitude |M | ∈ �T×F
+ and phase

θM ∈ �T×F , where T is the length of speech in time and F is the total
number of frequency channels.

Enhancing the magnitude response of noisy speech results in an
estimate of the clean speech magnitude response, |Ŝ|, using an en-
hancement function Fδ such that |Ŝ| = Fδ(|M |). The enhancement
function is modeled with a deep neural network which is trained to
maximize the conditional log-likelihood of the training dataset,

max
1

N

N∑
logP

(
|S|

∣∣∣ |M |
)

⇒ max
δ

1

N

N∑
logP

(
Fδ(|M |)

∣∣∣ |M |
)

where δ denotes the set of tunable parameters and N is the number
of training examples. The estimated magnitude response |Ŝ| is then
combined with the noisy phase, θM , where the inverse STFT produces
an enhanced speech signal in the time domain, ŝt.

B. Speech Quality Assessment Model

A MOS prediction model proposed by [61] is adapted to estimate
the MOS from noisy speech. This model has been developed with
real-world captured data and it has been shown to outperform com-
parison approaches [42], [52], [62], according to multiple metrics.
The MOS prediction model consists of an attention-based encoder-
decoder structure that uses stacked pyramid bi-directional long-short
term memory (pBLSTM) [63] networks in the encoder. We denote
this model as Pyramid-MOS (PMOS). A pBLSTM architecture gives
the advantages of processing sequences at multiple time resolutions,
which effectively captures short- and long-term dependencies. Speech
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Fig. 1. Depiction of our speech-enhancement model that consists of a MOS-prediction model denoted as PMOS (left side) and a speech-enhancement (SE) model
(right side). An attention mechanism connects the two models.

Fig. 2. Illustration of pBLSTM structure with reduction factor Υ = 2 and
number of layer L = 2.

has spectral and temporal dependencies over short and long durations,
and a multi-resolution framework is effective in learning these complex
relations.

A single T-F frame of the noisy-speech mixture, |M t|, is the input
to the PMOS encoder. In a pyramid structure, the lower layer outputs
from Υ consecutive time frames are concatenated and used as inputs
to the next pBLSTM layer, along with the recurrent hidden states from
the previous time step. The output of a pBLSTM node is an embedding
vector, hl

t, that is as defined below:

hl
t = pBLSTM

(
hl
t−1,

[
hl−1
Υ×t−Υ+1, h

l−1
Υ×t

])
(1)

where Υ is the reduction factor (e.g., number of concatenated frames)
between successive pBLSTM layers and l is the layer number. A
pBLSTM reduces the time resolution from the input speech to the final
latent representationH . Fig. 2 shows the internal structure of pBLSTM
module. This compressed vector accumulates the useful features for
measuring speech perceptual quality that resides in a range of time-
frames and ignores the least important features. The encoder outputs
a concatenated version of the hidden states of the last pBLSTM layer

as vector H = {h1, · · · ,hτ , · · · ,h℘}, where ℘ is the total number of
final embedding vectors with time index τ .

The output of the PMOS encoder becomes the input to the PMOS de-
coder unit. This decoder is implemented as an attention layer followed
by a fully-connected (FC) layer and it outputs an estimated MOS of
the input speech utterance. Attention models learn key attributes of
a latent sequence, since adjacent time frames can provide important
information, which is particularly crucial for our task. The attention
mechanism [64] uses the pyramid encoder output at the i-th and k-th
time steps to compute the attention weights,αPMOS

i,k . Attention weights
are used to compute a context vector, cPMOS

i , using the following
equations:

αPMOS
i,k =

exp (h�
i Qhk)∑℘

φ=1 exp (h
�
i Qhφ)

(2)

cPMOS
i =

℘∑
k=1

αPMOS
i,k · hk (3)

Q℘×℘ is the trainable PMOS attention weight matrix. We learnQ using
a feed-forward neural network that attempts to capture the alignment
between the embeddings hi and hk.

The context vector is provided to a fully-connected layer to estimate
the MOS. Note that the pyramid structure of the encoder results in
a shorter sequence of latent representations than the original input
sequence, and it leads to fewer encoding states for attention calculation
at the decoding stage. Therefore, strictly ℘ < T , and in our case
℘ = �T/ΥL�, where L is the number of pBLSTM layers. We train
the PMOS model separately with the parameters defined in [65]. After
training, this model is held frozen during inference.

C. Proposed Speech Enhancement Model

Our proposed speech-enhancement (SE) model follows an encoder-
decoder structure, and it is shown in Fig. 1 (right). The SE encoder
takes a single T-F frame of a noisy-speech mixture, |M t|, as input and
multiple BLSTM layers, are stacked together to create a hidden repre-
sentation of the frame, gt. In our SE encoder, we utilize BLSTM layers
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instead of pBLSTM layers since we aim to estimate an embedding frame
for each time frame and pBLSTM layers reduce the number of output
frames. An attention mechanism is applied using the mixture encoding
from the SE model, G = {g1,g2, · · · , gT }, and the PMOS encoding,
H , from the MOS prediction model. This allows the SE model to exploit
the MOS estimator’s encoding and utilize the important perceptual
feature embedding that correlates with human assessment. Considering
that the pBLSTM structure of the PMOS encoder condenses the final
encoding vector H along time, PMOS yields a smaller time resolution
than the encoding from the SE encoder, so we compute a score for
each embedding vector hτ using an alignment weight matrix, W T×℘.
Then the attention weights for the SE model, αt,τ , are obtained using a
softmax operation over the scores of all hτ . Now, the PMOS encoding
is summarized in a context vector ct for each mixture frame gt. Prior
to computing ct, hτ passes through a linear layer �, so that we learn a
different representation for the SE task. The computations are below:

αt,τ =
exp (g�

t Whτ )∑℘
φ=1 exp (g

�
t Whφ)

(4)

ct =

℘∑
τ=1

αt,τ · �(hτ ) (5)

Then, the context vector and SE-model embedding vector are concate-
nated (e.g., [ct,gt]) and passed to the decoder module. The SE-decoder
module follows the network structure from [58]. It consists of a linear
layer with a tanh(·) activation function, two BLSTM layers, and a
linear layer with ReLU activation. It outputs the estimated enhanced
speech |Ŝ|. This estimated speech magnitude with noisy phase produce
the estimated clean speech, i.e. Ŝ = |Ŝ|eiθM

. Since we are estimating
two targets MOS and enhanced speech simultaneously, the unified
model will learn different representations for these tasks. Thus both
PMOS and SE models will learn their corresponding targets with
perceptual feature sharing. We freeze the PMOS model while training
this SE model.

D. Joint-Learning of PMOS and SE Model

We also develop an approach that allows the PMOS and SE models to
be jointly trained. Our joint-learning objective function uses a weighted
average of a time-domain signal-approximation loss Lsa (from the SE
model), the MSE of the magnitude spectrumLmse (from the SE model)
and the MSE of the MOS estimation Lmos (from the PMOS model).
We compute the signal-approximation loss from the time-domain signal
difference between the reference speech s and enhanced speech ŝ. The
overall loss function of our network is defined as below, using hyper-
parameters λ1 and λ2 that control the impact of individual loss terms:

L = λ1 [λ2Lmse + (1− λ2)Lsa] + (1− λ1)Lmos (6)

The model training order is as such. First, we train the PMOS model
using Lmos (e.g. λ1 = 0). Then we train the SE model using λ1 = 1,
while running the PMOS model in inference mode (e.g. it is held
fixed). This is done to ensure that the trained PMOS model effectively
encodes the key features in the embedding vector that are important
to perceptual speech quality. Finally, we train both the models jointly
(e.g. 0 < λ1 < 1) usingL to further reduce any correctional differences
between the true and estimated MOS in the PMOS model, and to
increase the perceptual quality of the enhanced speech.

Fig. 3. Quantization of a clean magnitude spectrum.

E. Quantized Spectral Model

From written and spoken language, we can determine the sequences
of words that are most likely to occur. This knowledge is captured by a
language model (LM) of an automatic speech recognition system which
we can expressed as,

ˆwords = arg max words∈Language

acoustic model︷ ︸︸ ︷
P (input|words)

language model︷ ︸︸ ︷
P (words)

(7)

The LM is useful in eliminating rare and grammatically incorrect word
sequences, and it enhances the performance of ASR systems. In the
case of speech enhancement, models learn spectral information within
frames over time, but they often neglect the temporal correlations.
Our approach, as proposed in [66], suggests incorporating a “LM” to
fuse temporal correlations and overcome this limitation. Therefore, we
construct a bi-gram Quantized Spectral Model (QSM), which functions
in a similar way to a language model (LM), in order to produce
more realistic spectra. The QSM estimates the probability of spectral
magnitudes both along time for each frequency channel and along
frequency for each time frame conditioned on its previous T-F spectral
magnitude. It’s important to highlight that in the prior investigation [66],
QSM computations were carried out exclusively in either the time or
frequency domain, tailored to capture temporal or spectral associa-
tions, respectively. In contrast, our present study introduces a novel
approach to QSM computation in two dimensions. This innovative
technique simultaneously integrates both time and frequency aspects,
thus enabling us to effectively map correlations in higher-dimensional
spaces. On a reference speech corpora, we apply a normalization
scaling function, N[o,r](·), that normalizes the magnitude spectrogram
and re-scales the range to [0, r]. Then a quantization function, Qχ(·),
converts the range constrained magnitude spectrogram into D number
of bins that are χ steps apart. This produces quantized speech, i.e.
|S|q = Qχ(N[0,r](|S|)). Fig. 3 shows an example of the original clean
and quantized clean magnitude spectra, where χ = 2 for display pur-
poses. Our proposed QSM hasD spectral levels. We construct the QSM
using quantized speech magnitudes from the clean speech corpora. The
QSM is less likely to suffer from the out of vocabulary problem when
the model parameters, χ and r, are adequately defined.

We compute per-frequency-channel QSMs along the time axis where
each entry, d, refers to a quantization attenuation level. We then
compute the transition probability between two time consecutive T-F
units, fQSMf = P (dt+1,f |dt,f ). The probabilities are calculated by
counting the level transitions, and then normalizing by the appropriate
scalar. These probabilities are stored in the per-frequency-channel
QSM resulting in a F ×D ×D probability matrix. We re-evaluate the

Authorized licensed use limited to: The Ohio State University. Downloaded on February 15,2024 at 18:17:13 UTC from IEEE Xplore.  Restrictions apply. 



254 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 32, 2024

transition probabilities using Good-Turing smoothing [67] to overcome
the zero-probability problem in N-grams. Shallow fusion [68] is a
simple method to incorporate an external LM into an encoder-decoder
model, and it produces better results compared to others. Hence, we use
shallow fusion to combine our QSM and SE model based on log-linear
interpolations at inference time. This is shown in the below equations:

PQSM
f (|Ŝ:,f |) =

T∏
i=1

P (di,f |di−1,f ) (8)

|Ŝ:,f |∗ = arg max |Ŝ:,f | logP
(
|Ŝ:,f |

∣∣|M |
)
+ μ logPQSM

f

(
|Ŝ:,f |

)
(9)

Here PQSM
f denotes the transitional probability of QSM at frequency

f , P (|Ŝ:,f |
∣∣|M |) represents the estimated magnitude output of the

LSTM layers of the SE decoder, and μ is a hyper-parameter that is
tuned to maximize the performance on a development set. Note that
we train our QSM in advance on a clean speech corpus and use it in
inference mode during enhancement. The tunable parameter μ of (9) is
set to zero when we do not have a trained QSM.

III. EXPERIMENTS

A. Dataset

We use the COnversational Speech In Noisy Environments (CO-
SINE) [69] and the Voices Obscured in Complex Environmental Set-
tings (VOiCES) [70] corpora. COSINE captures multi-party conversa-
tions on open-ended topics for spontaneous and natural dialogue. These
conversations are recorded in real world environments in a variety of
background settings. The audio recordings are captured using 7-channel
wearable microphones that consist of a close-talking mic (e.g., near the
mouth, clean reference), far-field mic (on the shoulder), throat mic,
and an array of four mics (spaced 3 cm apart) positioned in front of
the speaker’s chest. In total, 133 English speakers record 150 hours of
audio with the approximated signal-to-noise ratios (SNR) ranging from
−10.1 to 11.4 dB.

VOiCES contains audio recorded using 12 microphones placed
throughout real rooms of different size and acoustic properties. Various
background noises like TV, music, or babble are simultaneously played
with foreground clean speech, so the recordings contain noise and rever-
beration. A foreground loudspeaker moves through the rooms during
recording to imitate human conversation. This foreground speech is
used as the reference clean signal, and the audio captured from the
microphones is used as the reverberant-noisy speech. The approximate
speech-to-reverberation ratios (SRRs) of the VOiCES signals range
from −4.9 to 4.3 dB.

The MOS data was collected from a listening study in [61]. Listeners
assessed the speech quality of audio signals using a 100-point scale.
In total, 45 hours of speech and 180 k subjective human ratings are
summarized into the MOS quality ratings for 18000 COSINE signals
and 18000 VOiCES signals. The collected responses are processed
further to mitigate rating biases [71], remove responses that were unan-
swered or randomly scored [72], and to deal with outliers [73], [74].
Z-score pruning [75] followed by min-max normalization is performed,
resulting in a MOS rating scale of 0 to 10. The scaled ratings for each
audio signal are finally averaged.

We additionally evaluate using the 4th CHiME Speech Separation
and Recognition Challenge (CHiME-4) [76] and the 5th CHiME Speech
Separation and Recognition Challenge (CHiME-5) [77] corpora. Ad-
ditionally, we test model performace on VoiceBank-DEMAND [78],

[79] dataset too. We use these to investigate the generalization capacity
of our proposed approach.

B. System Setup

All signals are downsampled to 16 kHz. Noisy or reverberant stimuli
of each dataset are divided into training (70%), validation (10%), and
testing (20%) sets, and trained separately.

For MOS prediction, the input signals are segmented into 40 ms
length frames with 25% overlap. A 512-point FFT and a Hanning
window are used to compute the spectrogram. Mean and variance
normalization are applied to the input feature vector. The PMOS
encoder consists of 256 nodes followed by 3 pBLSTM layers (L = 3)
with 128, 64 and 32 nodes in each direction, respectively. Like [61],
[63], the reduction factor Υ = 2 is adopted here. As a result, the final
latent representation hτ is reduced in the time resolution by a factor of
Υ3 = 8. The outputs of two successive BLSTM nodes are fed as input
to a BLSTM node in the upper layer. In the PMOS decoder, the context
vector is passed to a fully connected (FC) layer with 32 units. The
model is optimized using Adam optimization [80] with convergence
determined by a validation set. Early stopping with initial learning rate
of 0.001 is applied in the training phase.

The proposed SE model uses a 640-point DFT with a Hann window
of 40 ms and a 20 ms frame shift to generate the spectrogram for
the encoder input. The SE encoder consists of 2 BLSTM recurrent
layers. The SE decoder has a linear layer with tanh activation, followed
by 2-layers of BLSTM and a linear layer with ReLU activation [58],
[81]. Each BLSTM layer contains 200 nodes and each linear layer has
321 nodes. The same optimization technique with early stopping by
validation set is applied.

In terms of the overall count of trainable parameters, our model
incorporates a combined total of 5.88 million (MM) parameters, with
2.1 MM allocated to the PMOS model and 3.78 MM assigned to the SE
model. While our parameter count is relatively higher when compared to
models like MetricGAN [23] (2.58 MM) and SGMSE [82] (3.56 MM),
this increment is not excessively substantial given the encoder-decoder
model architecture. Notably, within the domain of speech enhance-
ment models, there exist models with even larger trainable parameter
counts, such as the diffusion-based DCCRN [83], [84] models (5.6 M),
joint-learning frameworks [85] (45 MM, 95 MM), and self-supervised
learning (SSL) models like wav2vec [86], [87] (32.54 MM) and Hu-
BERT [86], [88] (94.68 MM). For our proposed QSM language model,
we choose a quantization step of χ = 0.0625, which was validated by
a listening study conducted in [66]. With parameter r = 100, the total
number of quantization levels,D, is 1600. The QSM tunable parameter,
μ, is set to 0.01.

IV. RESULTS

A. MOS Prediction Results

We first evaluate our MOS-prediction performance in compar-
ison with other approaches. In particular, we compare against
NISQA [62], which we modified to estimate human-accessed MOS.
Originally, they estimate perceptual objective listening quality assess-
ment (POLQA) [89] scores using a CNN and BLSTM architecture.
We also compare against the PMOS model proposed in [61], which
is identical in structure to our PMOS model. Finally, we include our
proposed SE+PMOS approach [60] (no joint training), where our
PMOS model is held fixed while the SE model is training using the
embeddings from the PMOS encoder.

We use four metrics to evaluate MOS-estimation performance: mean
absolute error (MAE), epsilon insensitive root mean squared error
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TABLE I
PERFORMANCE COMPARISON WITH MOS PREDICTION MODELS COMPARING

AGAINST THE GROUND TRUTH MOS OBTAINED FROM HUMAN SUBJECTS

(RMSE) [90], Pearson’s correlation coefficient γ (PCC), and Spear-
man’s rank correlation coefficient ρ (SRCC).

Table I shows the results, where our proposed approach and
SE+PMOS clearly outperform the other MOS prediction models ac-
cording to all metrics. MAE is minimized by 0.6 compared to the
original PMOS [61] approach. There is also a 0.05 reduction in RMSE.
This justifies our proposed approach that combines MOS estimation and
speech enhancement tasks. It’s worth noting that comparable outcomes
are achieved with both our proposed approach and the SE+PMOS
method, indicating that joint training, such as fine-tuning, could po-
tentially enhance speech enhancement more than MOS prediction. The
consistent MOS scores underscore the greater suitability of the joint
learning technique for improving speech enhancement, whereas its
influence on speech assessment is distinct. Furthermore, the integration
of joint learning with the MOS-infused loss function sustains SE
performance without adversely affecting the MOS prediction model.
This observation underscores the intricate interplay between the models
and highlights the merits of our joint learning strategy.

B. Speech Enhancement Model

For speech enhancement, we compare against a baseline approach
without an attention mechanism [91]. We denote this baseline approach
as SE. Five separate loss functions are applied to optimize this approach,
and they are MSE, MSE plus signal approximation, MOS, signal ap-
proximation with MOS, and SDR. To compute the MOS loss function,
we utilize the SE loss function from [43] which leverages objective-
MOS (oMOS) ratings learned from a speech assessment model [42].
SDR [37] loss functions are proposed in literature previously with
different enhancement architectures. For the SDR loss function, the
SE model is optimized using the following cost function:

LSDR =

N∑
n=1

Kθ

(
10 log

‖sn‖2
‖sn − ŝn‖2

)
(10)

where Kθ(a) = θ · tanh(a
θ
), θ is a clipping parameter, N is the

mini-batch size, and sn and ŝn are the nth sample of the clean and
estimated speech signal in time. We use θ = 20 in our training. We also
compare against a generative adversarial network (GAN) approach that
individually optimizes with PESQ and STOI [23]. We denote this model
as MetricGAN. They estimate the IRM for a speech mixture conditioned
on a GAN discriminator that outputs evaluation scores in continuous
space (i.e. scores between 0 and 1) based on either normalized PESQ
or STOI target metrics. We compare our model with the ensemble-
based Specialized Speech Enhancement Model Selection (SSEMS)
approach [44] that uses Quality-Net [42] as its objective function in a
black-box manner. Quality-Net is an oMOS approach that estimates the
Perceptual Evaluation of Speech Quality (PESQ) score. The SSEMS
approach uses an ensemble of enhancement models, each trained on
audio at specific SNRs and speaker genders. During inference, it selects
the output with the highest PESQ score. SSEMS uses a SNR threshold of
20 dB, while we use a threshold of 0 dB for balanced training and better
performance. Additionally, we conduct a comparison with our initial

approach that integrates MOS embeddings in speech enhancement, as
presented in [60]. This model is referred to as SE+PMOS, and in con-
trast to our proposed approach, it does not have a QSM language model.
We assess SE+PMOS by experimenting with different combinations of
loss functions using the parameters λ1 and λ2 as defined in Equation (6).
Although our proposed model and SE+PMOS share similarities in terms
of loss functions, the introduction of the QSM during joint training
brings about notable improvements, particularly in the mitigation of
non-probabilistic speech and the refinement of speech utterances at a
finer granularity. Finally, a comparative analysis is conducted between
our proposed model and a diffusion SE model known as SGMSE [82].
SGMSE operates within the complex-STFT domain and is designed
for generative SE. It’s important to note that SGMSE model enhances
both magnitude and phase components, unlike our proposed approach.
The SGMSE model is solely employed for performance comparison
on a blind test corpus, specifically CHiME and VoiceBank-DEMAND
datasets. It’s worth mentioning that the original training of the SGMSE
model is conducted on the VoiceBank-DEMAND dataset. To ensure fair
evaluation in the blind performance test, we initialize the SGMSE model
with distinct training checkpoints: ‘VoiceBank-DEMAND’ when test-
ing on the CHiME dataset, and ‘WSJ0-CHiME3’ when testing on the
VoiceBank-DEMAND dataset. All models are trained using the exper-
imental setup that is previously mentioned. We modify the comparison
models using the code provided by the original authors.

We assess speech enhancement performance using PESQ [35], scale-
invariant SDR (SI-SDR) [92], and extended STOI (ESTOI) [93]. In the
absence of actual human quality objective, we measure the predicted
MOS score of the enhanced speech, using our proposed PMOS model,
since we aim to improve human-assessed speech quality. We denote this
metric as MOS listener quality objective (MOS-LQO). Table II shows
the average results of the different enhancement models, according to
each of the performance metrics on COSINE and VOiCES dataset.
As the scores of the unprocessed mixtures show, the VOiCES corpus
is more challenging than the COSINE corpus. With the baseline SE
model, we experiment with 5 different combination of loss functions.
Using the MSE loss only in SE:mse, we see improvements in objective
scores, except with MOS-LQO for the COSINE data. Then we apply
a MOS loss Lmos as the sole objective criterion, as proposed in [43].
Our experimental results show that this approach results in an overall
improvement of 1.4 in MOS-LQO compared to SE:mse. Then we
separately combine the signal approximation loss with the mse loss and
MOS loss (e.g., mse+sa and mos+sa). In PESQ, we gain an average of
≥ 0.05 and ≥ 0.07 compared to the models that use only the MSE
loss and only the MOS loss, respectively. Furthermore, the model
trained with the mos+sa loss function achieves the highest MOS-LQO
score of 4.4 and 5.7 among all five loss functions tested with the SE
model in COSINE and VOiCES dataset, respectively. This result is on
average 1.15 MOS-LQO higher than that obtained with the mse+sa
loss function. These scores suggest that Lmse and Lsa maximize the
overall speech intelligibility, whereas Lmos guides the model towards
perceptual speech quality. Note that in all these Lmos calculations, we
use a separately trained PMOS model’s output without joint learning.
Lastly, we apply the SDR loss function as proposed in [37], which is
used as the pre-training stage for model training. We observe an average
gain of 0.9 in SI-SDR, however, it yields a poor score according to other
metrics, especially a 0.7 loss in MOS-LQO compared to SE with mse
and sa loss terms.

SE+PMOS is separately investigated with 3 combinations of loss
functions, i.e. mse, mse+sa, and mse+sa+mos. Compared with SE
models, SE+PMOS with mse loss achieves 0.9 SI-SDR and 1.75
MOS-LQO improvements on average, which shows the benefit of incor-
porating the PMOS model. The SE+PMOS:mse+sa model improves the
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TABLE II
AVERAGE RESULTS OF THE SPEECH ENHANCEMENT MODELS IN DIFFERENT PERFORMANCE METRICS

TABLE III
AVERAGE TESTING RESULTS OF THE SPEECH ENHANCEMENT MODELS ON CHIME-5 AND CHIME-4 DATASETS

performance further with an average of 0.14 ESTOI gain over the
SE:mse+sa model. The inclusion of the mos loss gives the best MOS-
LQO scores of 5.1 and 6.5 over all the comparison models in noisy and
reverberant conditions, respectively.

MetricGAN optimizes PESQ or STOI, therefore, it outperforms
other comparison models in terms of PESQ and ESTOI, although
the scores for the SE+PMOS approaches are higher according to the
other evaluation metrics even though these metrics are not leveraged
during training. SSEMS yields the lowest scores across all metrics
compared with SE+PMOS and MetricGAN approaches, though we
do parameter tuning for this model. Chi++fQSM,bS estimates quantized
speech, and the results show that it affects the traditional objective
functions. This performs poorly compared with the SE+PMOS and
MetricGAN approaches, however, on average, it outperforms SSEMS
in all criteria, and the SE models in terms of PESQ. With the MOS-LQO
criteria, it fails to produce good scores. This points out the impor-
tance of incorporating perceptual features during enhancement, which
Chi++fQSM,bS clearly lacks.

We calculate the performance of our proposed model using two
combinations of loss functions. Using L (eq:6) in our proposed model,
we obtain the highest SI-SDR scores while maintaining similar PESQ
and ESTOI performance as compared to the best-performing model.
Specifically, our proposed model achieves the highest ESTOI score
and an average PESQ score that is only 0.03 less than that of the best
performing SGMSE model. Contrasting with the Chi++fQSM,bS model,
which uses spectral language model to estimate quantized speech, our
proposed approach outperforms the quantized model according to all
metrics, which proves the significance of joint learning.When com-
paring MOS-LQO scores, our proposed:mse+sa+mos model achieves
better scores than the other models except the SE+PMOS:mse+sa+mos
model with an average of only 0.05 declination. Thus, the inclusion of a

spectral language model helps the model proposed (e.g., mse+sa+mos)
to estimate better quality speech according to the overall evaluation
criteria. It is important to note that our proposed approach performs best
according to SI-SDR in both noisy and reverberant environments, where
this metric is not used by any of the approaches during optimization.

We further examine our approaches using completely unseen cor-
pora. We test models with the CHiME-5 and CHiME-4 corpora where
the models are trained from the COSINE dataset according to the system
setup mentioned in Section III-B. Table III shows the performance
evaluated according to PESQ, SI-SDR, ESTOI, MOS-LQO, and word
error rate (WER). To calculate WER, we use both the conventional
ASR baseline that is provided with CHiME-5 and CHiME-4 dataset,
and the state-of-the-art Whisper [94] model. Within the conventional
ASR, we delve into WER analysis through two distinct avenues:
the GMM-based ASR and the end-to-end ASR offered by the kaldi
toolkit. Our investigation reveals that the end-to-end approach yields
a higher error rate when compared to the GMM baseline. This might
happen due to larger data requirements of the end-to-end ASR sys-
tem as mentioned in [77]. Given this, we opt to employ the GMM
ASR approach in conjunction with the Whisper model to facilitate a
comprehensive comparison of WER performances across enhancement
models. In our assessment with Whisper, we employ a base model
(exclusively English, encompassing 74 million model parameters) to
generate transcripts. From the scores of mixtures, we find that CHiME-5
is more challenging than CHiME-4 with a 118.8% (with whisper,
39.5%) higher WER and a 0.46 lower SI-SDR. Our [proposed] approach
yields the best MOS-LQO scores with 4.9 with CHiME-5 and 6 with
CHiME-4 data. Furthermore, our proposed models exhibit the second
lowest WER of 78.3 (with whisper 30.3) for CHiME-5 and 18.1 (with
whisper 14.8) for CHiME-4, thus demonstrating their robustness and
effectiveness. Notably, SGMSE stands out with top performance in
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TABLE IV
AVERAGE TESTING RESULTS OF THE SPEECH ENHANCEMENT MODELS ON VOICEBANK-DEMAND DATASETS

WER (for both datasets), which can be attributed to its adeptness in
handling complex STFT, allowing it to enhance both the magnitude
and phase of the speech. Note that the WER of the GMM baseline
ASR for the CHiME-5 challenge is 72.8 in binaural and 91.7 in single
array conditions. Here our approaches enhance monaural speech, a
more challenging condition. For whisper, we compute WER only on
meaningful words because it does not detect laughs, noise, or inaudible
portions. Our proposed approach outperforms other comparison models
in terms of SI-SDR with a 5.29 average improvement compared to
others. According to PESQ and ESTOI metrics, SGMSE gives the best
performance, however, the proposed model’s performance is 0.03 and
0.05 lower according to PESQ and ESTOI, respectively. Hence, our
proposed approach is effective on out-of-vocabulary scenario trained
by a comparable dataset.

The assessment of model efficacy extends to an additional in-
dependent dataset, namely VoiceBank-DEMAND, as depicted in
Table IV. In order to provide a comprehensive evaluation of our pro-
posed approach, we have conducted paired t-test statistics against the
proposed model and the comparative approaches, and report the t and
p values where df refers to ‘degree of freedom’. In this context, our
proposed approach demonstrates superior performance when gauged
against all comparable models, showcasing particularly commendable
scores in the MOS-LQO metric (p values are significantly smaller
than 5e− 2), while maintaining competitive ratings in various other
evaluation criteria. However, it’s worth noting that SGMSE surpasses
our approach with statistical significance in PESQ (p = 0.03 < 0.05)
but not in ESTOI (p = 0.4 ≮ 0.05). Moreover, when compared with
MetricGAN, it shows statistically significant improvements in PESQ
(p = 0.04 < 0.05) compared to our approach. In all other comparative
aspects, our proposed model consistently outperforms the other models
with statistical significance. As observed in the CHiME dataset evalua-
tion, the SGMSE technique emerges as the top performer, securing the
highest scores in PESQ, SI-SDR, and ESTOI measurements.

C. Perceptual Quality Evaluation

We finally evaluate our model using P.835 metric [95] to measure per-
ceptual quality. We calculate the DNSMOS score on a scale of [1− 5] (1
= worst, 5 = best) for the mixture, PMOS+SE, MetricGAN, SGMSE,
and our proposed models using the CHiME-4 [76] and CHiME-5 [77]
datasets (simulated and real-recording). Fig. 4 shows the scores. With
CHiME-4, the original mixture scores range from 1.45 to 2.5 with a
median of 1.74. Our proposed model achieves a median MOS of 2.46,
which is higher than the others. Fon CHiME-5, the original mixture
scores range from 1.0 to 4.18. Our proposed model outperforms the
others with a median of 2.25. Our proposed model and PMOS+SE
have smaller standard deviations compared to MetricGAN. Overall,
our proposed model improves noisy speech in both the acoustic and
perceptual aspects.

V. DISCUSSION

Our proposed model outperforms all comparison models on SI-SDR
metrics for both seen and unseen datasets, without optimization of any

Fig. 4. MOS ratings of the speech enhancement modes on CHiME-4 and
CHiME-5 datasets using DNSMOS P.835.

of the models (Tables II, III). This means that our approach improves
speech quality by minimizing the distortion ratio when separated from
the noise component. Additionally, our models yield the best MOS-
LQO ratings on real-world captured audios (CHiME datasets, Table III
and VoiceBank-DEMAND datasets, Table IV). These results are consis-
tent with the findings of [57], [60] that incorporating embeddings from
a speech assessment model improves SE performance, and the results
of [56] that using MOS loss during model optimization leads to higher
MOS-LQO scores. Our proposed approach achieves PESQ and ESTOI
scores that are only slightly lower than those of the best-performing
model, with a difference of only 0.03 for both cases. This indicates that
speech quality and intelligibility metrics are closely related to the sub-
jective speech quality metric (MOS-LQO), and that these metrics can
be improved without explicit optimization. Furthermore, our proposed
model achieves the best average DNSMOS scores with low standard
deviations on CHiME datasets (Fig. 4), indicating that it is effective
in a wide range of real-world noise levels. This is a desirable quality
for an effective SE model to be effective not only in high SNRs and
limited noisy environments, but also in large SNR ranges and real-world
conditions such as those offered by the CHiME dataset.

When comparing our proposed model that uses mse+sa+mos loss
to the PMOS+SE model (as shown in Table III), we can observe
significant improvements in all performance metrics. As both models
use the same loss function, the improvements are attributed to the
incorporation of LM and the joint learning method. Moreover, we
found that these two models exhibit similar performance on the MOS
prediction (Table I), indicating that the benefits of joint learning mostly
impact the enhancement part of the model.
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While the SE+PMOS model exhibits slightly better MOS-LQO
scores on COSINE and VOiCES datasets (Table II), this variance is
attributed to a minor overfitting of the speech assessment model within
the SE+PMOS framework. However, the proposed model excels in
MOS-LQO performance on an unfamiliar corpus (Tables III, IV), indi-
cating the effectiveness of the joint learning approach in counteracting
overfitting on the PMOS model. Thus, our study demonstrates that the
joint learning scheme in the proposed model enhances MOS-LQO per-
formance, particularly on unseen data, outperforming the SE+PMOS
model.

The introduction of the QSM is pivotal in driving our model’s supe-
rior WER performance over others. Functioning akin to a spectrum LM
trained on clean speech, the QSM adeptly rectifies spectral components
within distorted speech mixtures. This correction mechanism likely
underlies the enhanced WER score. Harnessing the QSM’s spectrum
refinement capability, our model effectively counteracts distortion’s
detrimental effects, elevating speech recognition accuracy. The QSM
integration thus stands as a significant contributor to our model’s
improved WER performance compared to alternative approaches. An
intriguing finding is that our proposed model shows a slight decline in
WER% (HMM-ASR model) when MOS loss is incorporated, especially
for larger real-world recordings such as CHiME-5, with degradation
up to 1.1, however with whisper model is the WER is decreasing.
Although our study is not primarily concerned with ASR performance,
this suggests a potential trade-off between ASR accuracy and subjective
speech quality scores with conventional ASR. Further investigation is
needed to comprehend this relationship.

Our proposed method demonstrates that training a speech enhance-
ment (SE) model and a MOS-based speech assessment model jointly
can lead to better speech quality measured by objective metrics such
as perceptual quality, intelligibility, and MOS ratings. However, we
acknowledge that our study’s use of subjective MOS (sMOS) esti-
mation instead of actual human listeners may introduce discrepan-
cies between MOS-LQO and human-rated MOS, which could impact
our findings. To address this limitation, we plan to conduct sMOS
evaluation by human listeners in future work. Although we used the
same MOS prediction model for all comparison models, we believe
that incorporating human-rated sMOS evaluations will provide more
robust insights into our proposed method’s effectiveness. For computing
loss terms, we opt for the MSE loss function along with a bi-gram
language model that considers only time-along transitions. Our aim
is to keep the model simple and focus on the effectiveness of our
approach. However, we acknowledge that using different loss func-
tions for different loss components and employing a more complex
language model that considers both temporal and spectral transition
levels can be beneficial. We plan to explore these possibilities in our
future work.

VI. CONCLUSION

Our proposed speech enhancement model utilizes a speech quality
MOS assessment metric in a joint learning manner and incorporate
quantized ASR-style language model for better performance. The re-
sults show that it outperforms other models in both noisy and rever-
berant environments, as well as in unseen real-world noisy conditions.
It shows that perceptually-relevant embeddings are useful for speech
enhancement. However, we evaluate our model’s subjective score using
a MOS-estimation model. Additionally, our assessment model provides
utterance-level feedback, which may be sub-optimal since the model’s
embeddings are calculated at the frame level. In our proposed LM,
we consider only bi-gram spectral models which are generated by
considering only along-time transitions. In the future, we will explore

higher-order N-gram models that consider both temporal and spectral
transitions to enhance both magnitude and phase responses. We will
address per-frame or window level perceptual score generation in future
work.

REFERENCES

[1] N. Li and P. C. Loizou, “Factors influencing intelligibility of ideal binary-
masked speech: Implications for noise reduction,” J. Acoust. Soc. Amer.,
vol. 123, pp. 1673–1682, 2008.

[2] A. Narayanan and D. Wang, “Ideal ratio mask estimation using deep neural
networks for robust speech recognition,” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process., 2013, pp. 7092–7096.

[3] H. Erdogan, J. R. Hershey, S. Watanabe, and J. Le Roux, “Phase-sensitive
and recognition-boosted speech separation using deep recurrent neural
networks,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2015,
pp. 708–712.

[4] D. S. Williamson, Y. Wang, and D. Wang, “Complex ratio masking for
monaural speech separation,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 24, no. 3, pp. 483–492, Mar. 2016.

[5] J. Lee and H.-G. Kang, “A joint learning algorithm for complex-valued
TF masks in deep learning-based single-channel speech enhancement
systems,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 27, no. 6,
pp. 1098–1108, Jun. 2019.

[6] E. W. Healy and J. L. Vasko, “An ideal quantized mask to increase intel-
ligibility and quality of speech in noise,” J. Acoust. Soc. Amer., vol. 144,
pp. 1392–1405, 2018.

[7] Y. Luo and N. Mesgarani, “TaSNet: Time-domain audio separation net-
work for real-time, single-channel speech separation,” in Proc. IEEE Int.
Conf. Acoust. Speech Signal Process., 2018, pp. 696–700.

[8] A. Pandey and D. Wang, “A new framework for CNN-based speech
enhancement in the time domain,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 27, no. 7, pp. 1179–1188, Jul. 2019.

[9] B. O. Odelowo and D. V. Anderson, “A study of training targets for
deep neural network-based speech enhancement using noise predic-
tion,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2018,
pp. 5409–5413.

[10] Y.-J. Lu, Z.-Q. Wang, S. Watanabe, A. Richard, C. Yu, and Y. Tsao, “Con-
ditional diffusion probabilistic model for speech enhancement,” in Proc.
IEEE Int. Conf. Acoust. Speech Signal Process., 2022, pp. 7402–7406.

[11] Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, “An experimental study on speech
enhancement based on deep neural networks,” IEEE Signal Process. Lett.,
vol. 21, no. 1, pp. 65–68, Jan. 2014.

[12] Y. Wang, A. Narayanan, and D. Wang, “On training targets for supervised
speech separation,” IEEE/ACM Trans. Audio, Speech, Lang. Process.,
vol. 22, no. 12, pp. 1849–1858, Dec. 2014.

[13] B. Xia and C. Bao, “Speech enhancement with weighted denoising
auto-encoder,” in Proc. Annu. Conf. Int. Speech Commun. Assoc., 2013,
pp. 3444–3448.

[14] X. Lu, Y. Tsao, S. Matsuda, and C. Hori, “Ensemble modeling of denoising
autoencoder for speech spectrum restoration,” in Proc. 15th Annu. Conf.
Int. Speech Commun. Assoc., 2014, pp. 885–889.

[15] K. H. Lee, S. J. Kang, W. H. Kang, and N. S. Kim, “Two-stage noise aware
training using asymmetric deep denoising autoencoder,” in Proc. IEEE Int.
Conf. Acoust. Speech Signal Process., 2016, pp. 5765–5769.

[16] F. Weninger, J. R. Hershey, J. Le Roux, and B. Schuller, “Discriminatively
trained recurrent neural networks for single-channel speech separation,”
in IEEE Glob. Conf. Signal Inf. Process., 2014, pp. 577–581.

[17] H. Zhao, S. Zarar, I. Tashev, and C.-H. Lee, “Convolutional-recurrent
neural networks for speech enhancement,” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process., 2018, pp. 2401–2405.

[18] K. Tan and D. Wang, “A convolutional recurrent neural network for real-
time speech enhancement,” in Proc. Annu. Conf. Int. Speech Commun.
Assoc., 2018, pp. 3229–3233.

[19] H.-S. Choi, J.-H. Kim, J. Huh, A. Kim, J.-W. Ha, and K. Lee, “Phase-aware
speech enhancement with deep complex U-Net,” in Proc. Int. Conf. Learn.
Representations, 2018.

[20] M. Kolbæk, Z.-H. Tan, S. H. Jensen, and J. Jensen, “On loss functions
for supervised monaural time-domain speech enhancement,” IEEE/ACM
Trans. Audio, Speech, Lang. Process., vol. 28, pp. 825–838, 2020.

[21] S. Pascual, A. Bonafonte, and J. Serrà, “SEGAN: Speech enhancement
generative adversarial network,” in Proc. Annu. Conf. Int. Speech Commun.
Assoc., 2017, pp. 3642–3646.

Authorized licensed use limited to: The Ohio State University. Downloaded on February 15,2024 at 18:17:13 UTC from IEEE Xplore.  Restrictions apply. 



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 32, 2024 259

[22] C. Donahue, B. Li, and R. Prabhavalkar, “Exploring speech enhance-
ment with generative adversarial networks for robust speech recogni-
tion,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2018,
pp. 5024–5028.

[23] S.-W. Fu, C.-F. Liao, Y. Tsao, and S.-D. Lin, “MetricGAN: Generative ad-
versarial networks based black-box metric scores optimization for speech
enhancement,” in Proc. 36th Int. Conf. Mach. Learn., 2019, pp. 2031–2041.

[24] R. Giri, U. Isik, and A. Krishnaswamy, “Attention wave-U-Net for speech
enhancement,” in Proc. IEEE Workshop Appl. Signal Process. Audio
Acoust., 2019, pp. 249–253.

[25] B. Tolooshams, R. Giri, A. H. Song, U. Isik, and A. Krishnaswamy,
“Channel-attention dense U-Net for multichannel speech enhancement,” in
Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2020, pp. 836–840.

[26] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” in Proc. 18th Int. Conf. Med. Image
Comput. Comput.- Assist. Interv., 2015, pp. 234–241.

[27] X. Hao, C. Shan, Y. Xu, S. Sun, and L. Xie, “An attention-based neural
network approach for single channel speech enhancement,” in Proc. IEEE
Int. Conf. Acoust. Speech Signal Process., 2019, pp. 6895–6899.

[28] Y. Koizumi, K. Yaiabe, M. Delcroix, Y. Maxuxama, and D. Takeuchi,
“Speech enhancement using self-adaptation and multi-head self-
attention,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2020,
pp. 181–185.

[29] Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave it? A
new look at signal fidelity measures,” IEEE Signal Process. Mag., vol. 26,
no. 1, pp. 98–117, Jan. 2009.

[30] X. Shu, Y. Zhou, H. Liu, and T.-K. Truong, “A human auditory perception
loss function using modified bark spectral distortion for speech enhance-
ment,” Neural Process. Lett., vol. 51, pp. 2945–2957, 2020.

[31] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “An algo-
rithm for intelligibility prediction of time–frequency weighted noisy
speech,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 19, no. 7,
pp. 2125–2136, Sep. 2011.

[32] H. Zhang, X. Zhang, and G. Gao, “Training supervised speech separation
system to improve STOI and PESQ directly,” in Proc. IEEE Int. Conf.
Acoust. Speech Signal Process., 2018, pp. 5374–5378.

[33] S. W. Fu, T. W. Wang, Y. Tsao, X. Lu, and H. Kawai, “End-to-end waveform
utterance enhancement for direct evaluation metrics optimization by fully
convolutional neural networks,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 26, no. 9, pp. 1570–1584, Sep. 2018.

[34] Y. Koizumi, K. Niwa, Y. Hioka, K. Kobayashi, and Y. Haneda, “DNN-
based source enhancement to increase objective sound quality assessment
score,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 26, no. 10,
pp. 1780–1792, Oct. 2018.

[35] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, “Perceptual
evaluation of speech quality (PESQ)-a new method for speech quality
assessment of telephone networks and codecs,” in Proc. IEEE Int. Conf.
Acoust. Speech Signal Process., 2001, pp. 749–752.

[36] C. Févotte, R. Gribonval, and E. Vincent, “BSS_EVAL toolbox user guide–
Revision 2.0,” Tech. Rep., p. 19, 2005.

[37] M. Kawanaka, Y. Koizumi, R. Miyazaki, and K. Yatabe, “Stable training of
DNN for speech enhancement based on perceptually-motivated black-box
cost function,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.,
2020, pp. 7524–7528.

[38] Y. Koizumi, K. Niwa, Y. Hioka, K. Kobayashi, and Y. Haneda, “DNN-
based source enhancement self-optimized by reinforcement learning using
sound quality measurements,” in Proc. IEEE Int. Conf. Acoust. Speech
Signal Process., 2017, pp. 81–85.

[39] V. Emiya, E. Vincent, N. Harlander, and V. Hohmann, “Subjective and ob-
jective quality assessment of audio source separation,” IEEE/ACM Trans.
Audio, Speech, Lang. Process., vol. 19, no. 7, pp. 2046–2057, Sep. 2011.

[40] E. Vincent, “Improved perceptual metrics for the evaluation of audio
source separation,” in Proc. 10th Int. Conf. Latent Variable Anal. Signal
Separation, 2012, pp. 430–437.

[41] J. M. Martín-Doñas, A. M. Gomez, J. A. Gonzalez, and A. M. Peinado,
“A deep learning loss function based on the perceptual evaluation of the
speech quality,” IEEE Signal Process. Lett., vol. 25, no. 11, pp. 1680–1684,
Nov. 2018.

[42] S.-W. Fu, Y. Tsao, H.-T. Hwang, and H.-M. Wang, “Quality-Net: An end-
to-end non-intrusive speech quality assessment model based on BLSTM,”
in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2018, pp. 1873–
1877.

[43] S.-W. Fu, C.-F. Liao, and Y. Tsao, “Learning with learned loss function:
Speech enhancement with quality-net to improve perceptual evaluation of
speech quality,” IEEE Signal Process. Lett., vol. 27, pp. 26–30, 2020.

[44] R. E. Zezario, S.-W. Fu, X. Lu, H.-M. Wang, and Y. Tsao, “Specialized
speech enhancement model selection based on learned non-intrusive qual-
ity assessment metric.,” in Proc. Annu. Conf. Int. Speech Commun. Assoc.,
2019, pp. 3168–3172.

[45] M. Kolbæk, Z.-H. Tan, and J. Jensen, “Monaural speech enhancement
using deep neural networks by maximizing a short-time objective intelli-
gibility measure,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.,
2018, pp. 5059–5063.

[46] M. Kolbaek, Z.-H. Tan, and J. Jensen, “On the relationship between short-
time objective intelligibility and short-time spectral-amplitude mean-
square error for speech enhancement,” IEEE/ACM Trans. Audio, Speech,
Lang. Process., vol. 27, no. 2, pp. 283–295, Feb. 2019.

[47] A. W. Rix, J. G. Beerends, D.-S. Kim, P. Kroon, and O. Ghitza, “Ob-
jective assessment of speech and audio quality–technology and applica-
tions,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 14, no. 6,
pp. 1890–1901, Nov. 2006.

[48] E. Cano, D. FitzGerald, and K. Brandenburg, “Evaluation of quality
of sound source separation algorithms: Human perception vs quanti-
tative metrics,” in Proc. IEEE 24th Eur. Signal Process. Conf., 2016,
pp. 1758–1762.

[49] J. F. Santos, M. Senoussaoui, and T. H. Falk, “An improved non-intrusive
intelligibility metric for noisy and reverberant speech,” in Proc. IEEE Int.
Workshop Acoustic Signal Enhancement, 2014, pp. 55–59.

[50] S. R. Quackenbush, T. P. Barnwell III, and M. A. Clements, Objective
Measures of Speech Quality, 1st ed. Hoboken, NJ, USA: Prentice Hall,
1988.

[51] L. Malfait, J. Berger, and M. Kastner, “P. 563–The ITU-T standard
for single-ended speech quality assessment,” IEEE/ACM Trans. Audio,
Speech, Lang. Process., vol. 14, no. 6, pp. 1924–1934, Nov. 2006.

[52] A. R. Avila, H. Gamper, C. Reddy, R. Cutler, I. Tashev, and J. Gehrke,
“Non-intrusive speech quality assessment using neural networks,” in Proc.
IEEE Int. Conf. Acoust. Speech Signal Process., 2019, pp. 631–635.

[53] B. Patton, Y. Agiomyrgiannakis, M. Terry, K. Wilson, R. A. Saurous, and
D. Sculley, “AutoMOS: Learning a non-intrusive assessor of naturalness-
of-speech,” in Proc. Int. Conf. Neural Inf. Process. Syst. Workshop, 2016.

[54] C.-C. Lo et al., “MOSNet: Deep learning based objective assessment for
voice conversion,” in Proc. Interspeech, 2019, pp. 1541–1545.

[55] X. Dong and D. S. Williamson, “An attention enhanced multi-task model
for objective speech assessment in real-world environments,” in Proc.
IEEE Int. Conf. Acoust. Speech Signal Process., 2020, pp. 911–915.

[56] S. Braun and H. Gamper, “Effect of noise suppression losses on speech
distortion and ASR performance,” in Proc. IEEE Int. Conf. Acoust. Speech
Signal Process., 2022, pp. 996–1000.

[57] R. E. Zezario, S.-W. Fu, F. Chen, C.-S. Fuh, H.-M. Wang, and Y. Tsao,
“Deep learning-based non-intrusive multi-objective speech assessment
model with cross-domain features,” IEEE/ACM Trans. Audio, Speech,
Lang. Process., vol. 31, pp. 54–70, 2023.

[58] K. Schulze-Forster, C. S. J. Doire, G. Richard, and R. Badeau, “Joint
phoneme alignment and text-informed speech separation on highly cor-
rupted speech,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.,
2020, pp. 7274–7278.

[59] X. Ji et al., “Speaker-aware target speaker enhancement by jointly learning
with speaker embedding extraction,” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process., 2020, pp. 7294–7298.

[60] K. M. Nayem and D. S. Williamson, “Incorporating embedding vectors
from a human mean-opinion score prediction model for monaural speech
enhancement,” in Proc. Annu. Conf. Int. Speech Commun. Assoc., 2021,
pp. 216–220.

[61] X. Dong and D. S. Williamson, “A pyramid recurrent network for predict-
ing crowdsourced speech-quality ratings of real-world signals,” in Proc.
Annu. Conf. Int. Speech Commun. Assoc., 2020, pp. 4631–4635.

[62] G. Mittag and S. Möller, “Non-intrusive speech quality assessment for
super-wideband speech communication networks,” in Proc. IEEE Int.
Conf. Acoust. Speech Signal Process., 2019, pp. 7125–7129.

[63] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and spell:
A neural network for large vocabulary conversational speech recogni-
tion,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2016,
pp. 4960–4964.

[64] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proc. Empirical Methods
Natural Lang. Process., 2015, pp. 1412–1421.

[65] K. M. Nayem and D. S. Williamson, “Incorporating intra-spectral depen-
dencies with a recurrent output layer for improved speech enhancement,”
in Proc. IEEE 29th Int. Workshop Mach. Learn. Signal Process., 2019,
pp. 1–6.

Authorized licensed use limited to: The Ohio State University. Downloaded on February 15,2024 at 18:17:13 UTC from IEEE Xplore.  Restrictions apply. 



260 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 32, 2024

[66] K. M. Nayem and D. S. Williamson, “Towards an ASR approach using
acoustic and language models for speech enhancement,” in Proc. IEEE
Int. Conf. Acoust. Speech Signal Process., 2021, pp. 7123–7127.

[67] D. Jurafsky and J. H. Martin, Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition, 2nd ed. Upper Saddle River, NJ, USA: Prentice
Hall, 2009.

[68] C. Gulcehre et al., “On using monolingual corpora in neural machine
translation,” 2015, arXiv:1503.03535.

[69] A. Stupakov, E. Hanusa, J. Bilmes, and D. Fox, “COSINE-a corpus of
multi-party conversational speech in noisy environments,” in Proc. IEEE
Int. Conf. Acoust. Speech Signal Process., 2009, pp. 4153–4156.

[70] C. Richeyet al., “Voices obscured in complex environmental settings
(voices) corpus,” in Proc. Interspeech, 2018, pp. 1566–1570.

[71] S. Zielinski, F. Rumsey, and S. Bech, “On some biases encountered in
modern audio quality listening tests-a review,” J. Audio Eng. Soc., vol. 56,
pp. 427–451, 2008.

[72] U. Gadiraju, R. Kawase, S. Dietze, and G. Demartini, “Understanding
malicious behavior in crowdsourcing platforms: The case of online sur-
veys,” in Proc. 33rd Annu. ACM Conf. Hum. Factors Comput. Syst., 2015,
pp. 1631–1640.

[73] M. Esteret al., “A density-based algorithm for discovering clusters in large
spatial databases with noise,” in Proc. 2nd Int. Conf. Knowl. Discov. Data
Mining, 1996, vol. 96, pp. 226–231.

[74] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in Proc. IEEE
8th Int. Conf. Data Mining, 2008, pp. 413–422.

[75] J. Han, J. Pei, and M. Kamber, Data Mining: Concepts and Techniques.
Amsterdam, The Netherlands: Elsevier, 2011.

[76] E. Vincent, S. Watanabe, A. A. Nugraha, J. Barker, and R. Marxer, “An
analysis of environment, microphone and data simulation mismatches in
robust speech recognition,” Comput. Speech Lang., vol. 46, pp. 535–557,
2017.

[77] J. Barker, S. Watanabe, E. Vincent, and J. Trmal, “The fifth’CHiME’speech
separation and recognition challenge: Dataset, task and baselines,” in Proc.
Annu. Conf. Int. Speech Commun. Assoc., 2018, pp. 1561–1565.

[78] C. Valentini-Botinhao, X. Wang, S. Takaki, and J. Yamagishi, “Investi-
gating RNN-based speech enhancement methods for noise-robust text-to-
speech,” in Proc. ISCA Speech Synth. Workshop, 2016, pp. 146–152.

[79] J. Thiemann, N. Ito, and E. Vincent, “The diverse environments multi-
channel acoustic noise database (demand): A database of multichannel
environmental noise recordings,” in Proc. Meetings Acoust., 2013, Art.
no. 035081.

[80] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations, 2015.

[81] K. Schulze-Forster, C. Doire, G. Richard, and R. Badeau, “Weakly in-
formed audio source separation,” in Proc. IEEE Workshop Appl. Signal
Process. Audio Acoust., 2019, pp. 273–277.

[82] S. Welker, J. Richter, and T. Gerkmann, “Speech enhancement with score-
based generative models in the complex STFT domain,” in Proc. Annu.
Conf. Int. Speech Commun. Assoc., 2022, pp. 2928–2932.

[83] H. Yen, F. G. Germain, G. Wichern, and J. L. Roux, “Cold diffusion for
speech enhancement,” in Proc. IEEE Int. Conf. Acoust. Speech Signal
Process., 2023, pp. 1–5.

[84] Y. Hu et al., “DCCRN: Deep complex convolution recurrent network for
phase-aware speech enhancement,” in Proc. Interspeech, 2020, pp. 2472–
2476.

[85] Q.-S. Zhu, J. Zhang, Z.-Q. Zhang, and L.-R. Dai, “A joint speech en-
hancement and self-supervised representation learning framework for
noise-robust speech recognition,” in IEEE/ACM Trans. Audio, Speech,
Lang. Process., vol. 31, pp. 1927–1939, 2023.

[86] S.-W. Yanget al., “SUPERB: Speech processing universal performance
benchmark,” 2021, arXiv:2105.01051.

[87] S. Schneider, A. Baevski, R. Collobert, and M. Auli, “wav2vec: Unsu-
pervised pre-training for speech recognition,” in Proc. Interspeech, 2019,
pp. 3465–3469.

[88] W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia, R. Salakhutdinov, and
A. Mohamed, “HuBERT: Self-supervised speech representation learning
by masked prediction of hidden units,” IEEE/ACM Trans. Audio, Speech,
Lang. Process., vol. 29, pp. 3451–3460, 2021.

[89] J. G. Beerends et al., “Perceptual objective listening quality assessment
(POLQA), The third generation ITU-T standard for end-to-end speech
quality measurement Part I–Temporal alignment,” J. Audio Eng. Soc.,
vol. 61, pp. 366–384, 2013.

[90] ITUT Rec, “P. 1401, methods, metrics and procedures for statistical
evaluation, qualification and comparison of objective quality prediction
models,” Int. Telecommun. Union, 2012. [Online]. Available: https://www.
itu.int/rec/T-REC-P.1401/en

[91] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition with deep
recurrent neural networks,” in Proc. IEEE Int. Conf. Acoust. Speech Signal
Process., 2013, pp. 6645–6649.

[92] J. Le Roux, S. Wisdom, H. Erdogan, and J. R. Hershey, “SDR–half-baked
or well done?,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.,
2019, pp. 626–630.

[93] J. Jensen and C. H. Taal, “An algorithm for predicting the intelligibility of
speech masked by modulated noise maskers,” IEEE/ACM Trans. Audio,
Speech, Lang. Process., vol. 24, no. 11, pp. 2009–2022, Nov. 2016.

[94] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and
I. Sutskever, “Robust speech recognition via large-scale weak supervi-
sion,” in Proc. Int. Conf. Mach. Learn., 2023, pp. 28492–28518.

[95] C. K. Reddy, V. Gopal, and R. Cutler, “DNSMOS P. 835: A non-intrusive
perceptual objective speech quality metric to evaluate noise suppres-
sors,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2022,
pp. 886–890.

Authorized licensed use limited to: The Ohio State University. Downloaded on February 15,2024 at 18:17:13 UTC from IEEE Xplore.  Restrictions apply. 

https://www.itu.int/rec/T-REC-P.1401/en
https://www.itu.int/rec/T-REC-P.1401/en


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


