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Abstract
Transformer-based encoder-decoder architectures have recently

shown promising results in end-to-end speech translation. How-

ever, the content-based attention mechanism employed by the

Transformer was designed for text sequences and can only en-

code global inductive bias, that alone is not sufficient for learn-

ing good representations from speech signals. In this work, we

address this by putting architectural constraints on the Trans-

former to allow encoding of both local and global inductive

biases. This is accomplished by replacing the Transformer

encoder with a Conformer encoder that, in contrast to the

Transformer encoder, employs convolution in addition to self-

attention and feed-forward. As a result, the new model named

Conformer-Transformer has an encoder that captures both local

feature correlations and long-range dependencies from speech

signals. Experiments on seven non-English to English language

directions show that the Conformer-Transformer, compared to

strong Transformer-based baselines, achieves up to 3.54 BLEU

score improvements with a pre-trained encoder and up to 10.53
BLEU score improvements when trained from scratch.

Index Terms: speech translation, transformer, inductive biases,

self-attention, convolution

1. Introduction

Speech translation (ST) is a complex machine learning task

that maps source language speech signals to target language

text. Conventional methods for ST employ a cascade system

[1, 2, 3, 4, 5] wherein the source language speech signals go

through an automatic speech recognition (ASR) model that gen-

erates source language text transcriptions, which are passed to

a machine translation (MT) model that generates text transla-

tions in the target language. Since cascade systems employ

two separate models, they are slow at inference, prone to the

propagation of errors from the ASR model to the MT model,

and cannot effectively be applied to low-resource languages for

which source text transcripts are hard to collect. To overcome

the drawbacks of cascade systems, [6, 7, 8] propose end-to-end

systems that only employ a single recurrent encoder-decoder

model that does not require source language text transcripts.

Recurrent networks, however, are very slow at training due to

their sequential manner of processing information.

A Transformer [9], on the other hand, is an encoder-decoder

architecture that replaced recurrence and convolution with self-

attention and achieved state-of-the-art results in MT. It was first

used for ST in [10] and showed promising results, that made

it a viable end-to-end model. Recently, Transformer-based end-

to-end ST models have outperformed both cascade and previous

recurrent end-to-end systems in the shared task of offline speech

translation [11]. However, the Transformer employs a content-

based attention mechanism that cannot encode local inductive

bias, which is essential to learn good representations from data

with a local proximity bias (e.g., speech signals).

Inductive biases (or learning biases) are one of the main at-

tributes that guide a learning algorithm towards generalization

[12, 13]. Learning algorithms lacking suitable inductive biases

can be easily tempted by local minima on the loss surface [14].

Hence, strong inductive biases are needed for a learning algo-

rithm to descend towards global minima and achieve good gen-

eralization performance. For speech data, a local inductive bias

helps capture short-range dependencies whereas a non-local in-

ductive bias helps capture long-range dependencies. Since in

ST the Transformer Encoder has to deal with speech signals,

the absence of a local inductive bias will result in bad general-

ization performance.

Previous works have accounted for the absence of a local in-

ductive bias in the Transformer encoder. In [15], a convolution-

based 2D attention is proposed to allow modeling of both tem-

poral and spectral dynamics in speech inputs, but it was evalu-

ated only for speech recognition. A linear distance map is in-

troduced in [16] to model the relative distance between words

in a sentence, but was evaluated for sentence encoding. The

approach in [17] adds a soft Gaussian mask to the attention

energies to provide attention heads with explicit control over

the context range. In a similar approach, [18] penalizes the en-

coder attention weights with a logarithmic distance penalty in

addition to employing the convolution-based 2D attention [15].

Though all of these methods have shown promising results in

the tasks they are evaluated on, we argue that adjusting the self-

attention mechanism to encode local inductive bias is not an

optimal method and will lead the Transformer to sub-optimal

solutions. In contrast, [19] proposes a convolution augmented

Transformer that encodes both local and global inductive biases

in a parameter-efficient and optimal manner. However, it was

also evaluated only on speech recognition. Moreover it uses an

long short-term memory (LSTM) decoder and is trained in a

RNN-Transducer [20] framework that uses a joint network to

output a distribution over all possible input-output alignments.

Encoding inductive biases into learning algorithms can be

done in many ways: architectural constraints, parameter shar-

ing, objective function, curriculum, or optimization method. We

focus our efforts on using architectural constraints as a means

of encoding inductive biases into the Transformer. One very

simple, yet powerful, architectural constraint to inject local and

non-local inductive biases into the Transformer is to employ

both convolution and self-attention in the encoder. We hypothe-

size that, as a result of this simple architectural constraint on

the Transformer encoder, both convolution and self-attention

will inject their underlying inductive biases into the encoder,

enabling the encoder to capture fine-grained local correlations

and long-range relationships from speech signals. Our contri-
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Figure 1: Proposed Conformer-Transformer model with vanilla

Transformer Decoder (right) and Conformer Encoder (left).

butions are as follows: We show that encoding suitable induc-

tive biases into the Transformer using simple architectural con-

straints improves end-to-end speech translation. We propose

to employ self-attention and convolution in an optimal manner

that is - use self-attention for capturing long-range dependen-

cies and convolution for learning local correlations. To the best

of our knowledge, this is the first attempt in end-to-end ST that,

to encode local inductive bias and extract local feature patterns

from speech signals, leaves self-attention unmodified and relies

solely on convolution.

The rest of the paper is laid out as follows: Section 2 intro-

duces our proposed model, Section 3 outlines the dataset, data

pre-processing, and experimental setups, Section 4 presents the

results, Section 5 discusses about the findings, and finally Sec-

tion 6 summarizes the results of the work.

2. Conformer-Transformer

Our proposed model named Conformer-Transformer, depicted

in Figure 1 has an encoder-decoder architecture similar to that

of the vanilla Transformer [9], however, we replace the encoder

with a Conformer Encoder [19] to encode both local and non-

local inductive biases into the encoder.

Before feeding the speech features to the Conformer En-

coder, we apply two temporal convolution sub-sampling layers

each with a kernel size of 5 and stride of 2 to achieve a 4x re-

duction across the temporal dimension, resulting in a final input

feature vectors at 40ms rate. Each convolution layer is followed

by layer normalization [21] and a GELU activation [22]. Sinu-

soidal positional encodings [9] are added to the outputs of the

last convolution layer.

2.1. Conformer Encoder

A Conformer Encoder consists of N identical encoder blocks.

Each encoder block has four modules: Feed-Forward, Multi-

Head Self-Attention, Convolution, and another Feed-Forward.

The feed-forward module consists of two linear transforma-

tions with a ReLU activation in between. The two linear trans-

formations are analogous to pointwise convolutions (or convo-

lutions with a 1 x 1 kernel).

We use the same multi-head self-attention (MHSA) mech-

anism as in [9] wherein a query and a set of key-value pairs are

mapped to an output. The set of queries, keys, and values are

all packed together into matrices Q, K, and V respectively. The

final matrix of outputs is computed using the scaled dot-product

attention function as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where dk is the key dimension. The attention function is

applied to h heads in parallel. All h heads are first concatenated

and than projected, resulting in the final outputs as depicted in

Equation 2.

MHSA(Q,K, V ) = Concat(headi, ..., headh)W
O

where headi = Attention(QWQ
i ,KWK

i , V WV
i )

(2)

where i ∈ [1, h] and WQ, WK , WV , WO are query, key,

value, and output projection matrices.

The convolution module includes the following compo-

nents: Pointwise convolutions, Gated linear unit (GLU) [23],

1D depth-wise convolution, Batch normalization [24] and a

Swish activation [25]. The inputs to the module first go through

a gated convolution - pointwise convolution with GLU activa-

tion, followed by a 1D depth-wise convolution. Batch normal-

ization and Swish activation are applied after 1D depth-wise

convolution. This is followed by another pointwise convolu-

tion.

In each Conformer block, residual connections are em-

ployed after each module, however, we use half-step residual

weights in the feed-forward modules. According to the ablation

studies by [19], using half-step residual weights yields better

performance. Hence, we adopt this strategy as well. Dropout

[26] is applied before each residual connection. Inputs to each

Conformer block are processed as:

x̄i = xi +
1

2
FF(LayerNorm(xi))

x̀i = x̄i + MHSA(LayerNorm(x̄i))

x́i = x̀i + Conv(LayerNorm(x̀i))

yi = x́i +
1

2
FF(LayerNorm(x́i))

(3)

where xi and yi are the inputs and outputs of the i-th Con-

former Block and i ∈ [1, ..., N ]. FF, MHSA, and Conv indicate

feed-forward, multi-head self-attention, and convolution mod-

ules respectively. Layer Normalization is abbreviated as Layer-

Norm.

2.2. Transformer Decoder

Our decoder is the same as the vanilla Transformer decoder as

in [9]. It consists of K = 6 identical decoder blocks each

with three modules: multi-head self-attention (MHSA), masked
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multi-head self-attention (mMHSA), and feed-forward. The

mMHSA module applies a look-ahead mask to the attention

weights to prevent positions from attending to subsequent posi-

tions. Besides, the keys and values for the mMHSA come from

the encoder. Similar to the encoder, inputs to each module in the

decoder block are layer normalized and a residual connection is

employed between the outputs and the pre-normalized inputs of

each module. The decoder is defined in Equation 4 where j is

the index of an decoder block and j ∈ [1,M ]. K, V are key

and value matrices from the encoder.

x̄j = xj + mMHSA(LayerNorm(xj))

x̀j = x̄j + MHSA(LayerNorm(x̄j ,K, V ))

yj = x̀j + FF(LayerNorm(x̀j))

(4)

In the original transformer implementation, the output em-

bedding weights are shared with the final linear layer of the net-

work following the decoder. However, we avoid this weight-

sharing as our early experiments did not show any benefit in

doing so.

3. Experiments

3.1. Data

We evaluate our model on seven language directions: {French

(Fr), German (De), Spanish (Es), Italian (It), Russian (Ru), Chi-

nese (Zh), Portuguese (Pt)} → English (En) from the large-

scale speech translation benchmark CoVoST 2 [27]. For English

ASR pre-training of the encoder (when applicable), we use the

Common Voice Corpus 4 [28].

3.2. Experimental Setups

3.2.1. Data Preprocessing

We extract 80-dimensional log-mel filterbank features com-

posed from a 25ms window with a stride of 10ms. Filterbanks

are normalized to have zero mean and unit variance. Spectro-

gram data augmentation [29] with time and frequency masking

(LB policy) is applied during training to prevent over-fitting.

Character vocabularies with 100% coverage are built on train-

ing data using SentencePiece text tokenizer [30].

3.2.2. Training and Inference

Our models have input-output embedding dimension dmodel =
256, inner-layer dimension dff = 1024, and h = 4 attention

heads each with dimension dmodel/h = 64. Our base model

has 6 encoder and 6 decoder layers. For our deep model, we

use 12 encoder layers. For [18] we used their best model, S-

Transformer Big+Log, that has 6 encoder and 6 decoder layers

with a higher input-output embedding dimension dmodel = 512
and h = 8 attention heads. The model from [27] has 12 encoder

and 6 decoder layers with a higher inner-layer dimension dff =
2048.

Pre-training on English ASR has shown to benefit ST [31].

Hence, we train two versions of all models - one trained from

scratch and one that uses an encoder pre-trained on English

ASR. All models are trained for 60k steps using Adam opti-

mizer [32] with β1 = 0.9 and β2 = 0.98. During training,

the learning rate was varied according to the formula proposed

in [9]: it was linearly increased in the warm-up stage and then

decreased at each step by the factor of 1/
√
steps accordingly.

We used 10k warmup steps. In addition, Gradient Clipping [33]

with threshold 10.0, Label smoothing [34] with smoothing pa-

rameter ǫ = 0.1, and Dropout [26] with p = 0.1 are employed.

Model evaluation is performed by averaging the last N val-

idation checkpoints. We only report the best of the two results

obtained by setting N = 5 and N = 10. At inference, we

use beam search with a beam size of 5 and length penalty of

1. We report case-sensitive and detokenized BLEU scores [35]

obtained using sacreBLEU [36].

4. Results

We compare our proposed model with two strong Transformer-

based baselines. First, referred further as Wang et al. [27], is

a vanilla Transformer and state-of-the-art (SOTA) on CoVoST

2 [27]. Second is the model proposed by Di Gangi et al. [18].

This model is based on the Transformer as well but has been

adjusted for speech inputs: It uses Convolution-based 2D At-

tention mechanism [15] before the self-attention and applies a

logarithmic distance penalty to encoder attention weights so as

to bias the model towards local context.

4.1. Training from Scratch

We first compare the BLEU scores obtained by our proposed

model with those obtained by Wang et al. [27] and Di Gangi

et al. [18] when all the models are trained from scratch. In Ta-

ble 1 under the heading Training from Scratch, we can see that

our base model is able to improve previous SOTA results on six

language directions and set new SOTA results on two language

directions: De→En and Ru→En, that too with just 16 million

parameters. It achieves a minimum of 1.5 to a maximum of

9.6 BLEU score improvements over Wang et al. [27] and a

minimum of 2.1 to a maximum of 21.2 BLEU score improve-

ments over Di Gangi et al. [18]. On the other hand, our deep

model outperforms our base model and sets new SOTA results

on five language directions: Fr→En, Es→En, It→En, Zh→En,

and Pt→En. With just 25M parameters, it produces perfor-

mance improvements ranging from 0.9 to 10.5 BLEU scores

over Wang et al. [27] and from 2.1 to 22.4 BLEU score im-

provements over Di Gangi et al. [18]. We can assess the quality

of our proposed models by looking at their perplexity curves.

Figure 2 shows the perplexity curves for De→En. It can be

seen that our models have lower perplexities than that of Wang

et al. [27] and Di Gangi et al. [18].

4.2. Encoder ASR Pre-Training

We first compare the Word Error Rates (WER) for the encoder

English ASR pre-training as shown in Table 2. Though our pro-

posed models achieve a lower WER than Di Gangi et al. [18],

they are still higher than Wang et al. [27]. These results sug-

gest that the ASR WER may not be a good indicator of final ST

performance. The BLEU scores obtained by all models trained

using the pre-trained encoder weights are summarized in Ta-

ble 1 under the heading Encoder ASR Pre-Training. We can

see that our base model again outperforms the previous SOTA,

but this time on all seven langauge directions. It shows gains

from +0.1 to +2.4 BLEU scores over Wang et al. [27] and from

+1.1 to +5.2 BLEU scores over Di Gangi et al. [18]. Our deep

model yet again outperforms our base model to set new SOTA

on six language directions: Fr→En, De→En, Es→En, It→En,

Ru→En, and Pt→En. Compared to Wang et al. [27], our deep

model shows 0.3-3.5 BLEU score improvements, even with a

higher WER (26.89 ours vs 25.56 Wang et al. [27]). When

compared with Gangi et al. [18], our deep model shows 1-5.6
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Table 1: BLEU ↑ scores for X→En Speech Translation on CoVoST 2 test set. Results in bold are where our model improves previous

end-to-end state-of-the-art and new state-of-the-art results are shown as underlined. For each source language the amount of training

data available (in hours) is indicated in round brackets.

Training from Scratch

Model Fr (264) De (184) Es (113) It (44) Ru (18) Zh (10) Pt (10) Params Enc Layers

Wang et al. [27] 24.30 8.40 12.00 0.25 1.20 1.40 0.50 27M 12

Di Gangi et al. [18] 4.67 0.44 0.13 0.02 0.11 0.83 0.17 32M 6

Ours (base) 22.75 12.65 21.40 8.21 10.80 2.95 2.28 16M 6

Ours (deep) 25.23 8.07 22.53 8.51 10.37 3.01 3.02 25M 12

Encoder ASR Pre-Training

Model Fr (264) De (184) Es (113) It (44) Ru (18) Zh (10) Pt (10) Params Enc. Layers

Wang et al. [27] 25.05 17.58 22.28 11.14 14.92 5.80 6.10 27M 12

Di Gangi et al. [18] 24.05 15.98 21.18 7.90 11.81 5.08 5.03 32M 6

Ours (base) 25.22 18.01 24.71 12.58 17.08 6.15 7.83 16M 6

Ours (deep) 27.26 20.01 25.82 13.55 17.94 6.10 9.02 25M 12

BLEU score improvements.

5. Discussion

The vanilla Transformer model used by Wang et al. [27] only

encodes non-local inductive bias, whereas our proposed model

encodes both local and non-local inductive biases. As a result,

we can see from the results that our proposed model is able to

outperform it on all seven language directions not only when en-

coders are pre-trained on English ASR but also when the mod-

els are trained from scratch. In comparison with the model by

Di Gangi et al. [18], which uses a 2D convolution-based atten-

tion and log distance penalty to capture local context, our model

achieves better results on all seven language directions. These

results strengthen our argument that - adjusting self-attention to

encode local inductive bias is a sub-optimal method and will

lead to sub-optimal solutions.

It is interesting to see that our deep model (trained from

scratch) outperforms the SOTA results of Wang et al. [27] (uses

pre-trained encoder) on two language directions: Fr→En and

Es→En by 0.18 and 0.25 BLEU scores respectively.

Table 2: WER results for Encoder ASR pre-training on Common

Voice Corpus 4 English test set.

Model WER ↓
Di Gangi et al. [18] 33.73

Wang et al. [27] 25.56

Ours (base model) 29.38

Ours (deep) 26.89

6. Conclusions

We have shown that encoding both local and non-local in-

ductive biases into the Transformer brings large performance

gains in end-to-end ST task. Our proposed model, Conformer-

Transformer, exploits both local and global context to learn

meaningful representations from speech signals and outper-

forms strong Transformer-based baselines by large margins.

Results on seven language directions warrant our hypothesis

that indeed use of self-attention for encoding non-local induc-

Figure 2: Perplexity curves for German (De) → English (En)

computed on CoVoST 2 validation set. All models are trained

from scratch.

tive bias and convolution for encoding local inductive bias leads

the learning algorithm to generalize to better solutions.
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A. Waibel, “Self-attentional acoustic models,” arXiv preprint

arXiv:1803.09519, 2018.

[18] M. A. Di Gangi, M. Negri, and M. Turchi, “Adapting transformer
to end-to-end spoken language translation,” in Proc. Interspeech,
2019, pp. 1133–1137.

[19] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu,
W. Han, S. Wang, Z. Zhang, Y. Wu, and R. Pang, “Conformer:
Convolution-augmented Transformer for Speech Recognition,” in
Proc. Interspeech, 2020, pp. 5036–5040.

[20] A. Graves, “Sequence transduction with recurrent neural net-
works,” in International Conference of Machine Learning (ICML)

Workshop on Representation Learning, 2012.

[21] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,”
arXiv preprint arXiv:1607.06450, 2016.

[22] D. Hendrycks and K. Gimpel, “Gaussian error linear units
(gelus),” arXiv preprint arXiv:1606.08415, 2020.

[23] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language
modeling with gated convolutional networks,” in International

conference on machine learning, 2017, pp. 933–941.

[24] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proceed-

ings of the 32nd International Conference on Machine Learning,
2015, pp. 448–456.

[25] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activa-
tion functions,” arXiv preprint arXiv:1710.05941, 2017.

[26] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural net-
works from overfitting,” Journal of Machine Learning Research,
vol. 15, no. 56, pp. 1929–1958, 2014.

[27] C. Wang, A. Wu, and J. Pino, “Covost 2 and mas-
sively multilingual speech-to-text translation,” arXiv preprint

arXiv:2007.10310, 2020.

[28] R. Ardila, M. Branson, K. Davis, M. Henretty, M. Kohler,
J. Meyer, R. Morais, L. Saunders, F. M. Tyers, and G. Weber,
“Common voice: A massively-multilingual speech corpus,” arXiv

preprint arXiv:1912.06670, 2020.

[29] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk,
and Q. V. Le, “Specaugment: A simple data augmentation method
for automatic speech recognition,” in Proc. Interspeech, 2019.

[30] T. Kudo and J. Richardson, “SentencePiece: A simple and lan-
guage independent subword tokenizer and detokenizer for neural
text processing,” in Proceedings of the Conference on Empirical

Methods in Natural Language Processing: System Demonstra-

tions, 2018, pp. 66–71.

[31] S. Bansal, H. Kamper, K. Livescu, A. Lopez, and S. Goldwater,
“Pre-training on high-resource speech recognition improves low-
resource speech-to-text translation,” in Proceedings of the 2019

Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Vol-

ume 1 (Long and Short Papers), 2019, pp. 58–68.

[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in 3rd International Conference on Learning Repre-

sentations, 2015.

[33] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of train-
ing recurrent neural networks,” in Proceedings of the 30th Inter-

national Conference on Machine Learning, 2013, pp. 1310–1318.

[34] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Re-
thinking the inception architecture for computer vision,” CoRR,
vol. abs/1512.00567, 2015.

[35] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method
for automatic evaluation of machine translation,” in Proceedings

of the 40th Annual Meeting of the Association for Computational

Linguistics, 2002.

[36] M. Post, “A call for clarity in reporting BLEU scores,” in Proceed-

ings of the Third Conference on Machine Translation: Research

Papers, 2018, pp. 186–191.

2291


