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Abstract—Many purely neural network based speech separation
approaches have been proposed to improve objective assessment
scores, but they often introduce nonlinear distortions that are
harmful to modern automatic speech recognition (ASR) systems.
Minimum variance distortionless response (MVDR) filters are of-
ten adopted to remove nonlinear distortions, however, conventional
neural mask-based MVDR systems still result in relatively high
levels of residual noise. Moreover, the matrix inverse involved in
the MVDR solution is sometimes numerically unstable during joint
training with neural networks. In this study, we propose a multi-
channel multi-frame (MCMF) all deep learning (ADL)-MVDR
approach for target speech separation, which extends our prelimi-
nary multi-channel ADL-MVDR approach. The proposed MCMF
ADL-MVDR system addresses linear and nonlinear distortions.
Spatio-temporal cross correlations are also fully utilized in the
proposed approach. The proposed systems are evaluated using
a Mandarin audio-visual corpus and are compared with several
state-of-the-art approaches. Experimental results demonstrate the
superiority of our proposed systems under different scenarios and
across several objective evaluation metrics, including ASR perfor-
mance.

Index Terms—Speech separation, deep learning, MVDR, ADL-
MVDR.

I. INTRODUCTION

TARGET speech separation algorithms extract target speech
signal from noisy background when interfering sources

and background noise exist [1]. These algorithms serve as
important front-ends for many speech communication systems
such as automatic speech recognition (ASR) [2]–[5], speaker
verification [6], and digital hearing-aid devices [7]. With the
recent achievements in deep learning, many neural network
(NN) based speech separation systems have been proposed.
Many early approaches synthesize the separated speech after
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combining the time-frequency (T-F) masked spectrogram with
the original noisy phase [8]–[10]. The use of the noisy phase
sets a sub-optimal upper bound on the system’s performance as
phase plays an important role in the perceptual speech quality
and intelligibility [11]–[14]. Phase-aware T-F masks have later
been proposed, including the phase-sensitive mask [10], [15],
[16], and complex ratio mask [12]. Yet an accurate estimate of
the phase component is still difficult for an NN to learn, due to
the lack of structure in the phase response.

Besides T-F mask based systems, many recent speech sep-
aration systems have been proposed that operate directly on
the time-domain speech signal in an end-to-end fashion [17]–
[22], to avoid directly estimating the magnitude and phase
components. Some of these approaches (e.g., Wave-U-Net [21]
and TasNet [19]) replace the conventional STFT and inverse
STFT (iSTFT) signal processing procedures with a learnable
NN-based encoder and decoder structure. The encoded features
are then altered by a learned-latent mask, where they are later
fed to the decoder. The recent time-domain fully-convolutional
Conv-TasNet [22] has substantially improved performance ac-
cording to many objective measures, where it features a TasNet-
like encoder-decoder structure that extracts the target speech
in a learned latent space [19]. Alternatively, other approaches
implicitly combine the feature extraction and the separation
steps as reported in [17], [20].

Purely NN-based speech separation systems have achieved
impressive objective speech quality scores, since they greatly
reduce the amount of noise or interfering speech. These
approaches, however, often introduce unwanted nonlinear
distortions into the separated signal, since these models
focus on removing unwanted interferences without imposed
constraints that limit the solution space. These resulting
nonlinear distortions negatively affect the performance of ASR
systems [22]–[24]. To alleviate the nonlinear distortion issue
and achieve better performance on source separation, speech
separation systems in practice often adopt a multi-channel
processing scheme to further leverage spatial information in
addition to original spectral information. Many approaches
have been developed, including the multi-channel Wiener filter
(MWF) [25], [26], the linearly constrained minimum variance
(LCMV) filter [27] and the minimum variance distortionless
response (MVDR) filter. The MVDR filter can be viewed as a
special case of MWF and LCMV, as it forces a distortionless
response when oracle directional information is available
[28]–[31]. MVDR filters have been widely used in speech
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separation systems to reduce the amount of nonlinear distortions,
which is helpful to ASR systems [23], [32], [33]. The distortion-
lessness of the separated speech is ensured as the MVDR filter
is derived under constraints that preserve speech information at
the target direction. On the contrary, other beamformers such as
the Generalized Eigenvalue (GEV) beamformer [34], [35] aim
to improve the signal-to-noise ratio (SNR) without controlling
the amount of distortions in the separated speech signal. Ad-
ditionally, multi-frame MVDR (MF-MVDR) filters [36]–[38]
have been adopted in single-channel speech separation systems
to remove the noise and ensure the distortionlessness of the
separated speech. Prior studies have shown that when oracle
information is available, the MF-MVDR filter can greatly
diminish the noise while introducing few distortions [36], [39].

Recent MVDR approaches are often combined with an NN-
based T-F mask estimator [23], [33], [40], [41] that leads to more
accurate estimates of the speech and noise components, and bet-
ter ASR performance due to fewer nonlinear distortions. How-
ever, many of these conventional neural mask-based MVDR
systems result in high levels of residual noise (e.g., linear distor-
tions), since segment- or utterance-level beamforming weights
cannot fully eliminate residual noise on each frame [9], [23],
[33], [42]. Our recent work further incorporates multi-frame
(MF) information during beamforming weights derivation [23],
where it exploits extra inter-frame correlation in addition to
the spatial correlation between the microphones in conventional
multi-channel MVDR approaches. Results showed better ASR
accuracy and higher PESQ scores when compared to conven-
tional neural mask-based MVDR approaches. Unfortunately, the
amount of residual noise in the separated signal is still high.

Many online beamforming weights estimation approaches
have been proposed recently for real-time or time-varying pur-
poses [43]–[48]. In [43], Souden et al. proposed a recursive
method with heuristic updating factors to estimate the time-
varying speech and noise covariance matrices, but these heuris-
tic updating factors are hard to determine and often limit the
system’s performance. Systems such as [44], [47], [48] also
used smoothing factors to estimate the time-varying covariance
matrices, although these approaches allow better performance
in time-varying conditions, the residual noise could still be
present and postfilering is sometimes needed. [46] proposed a
frame-level beamforming method, however, it achieved slightly
worse ASR accuracy compared to conventional segment-level
beamforming systems [46].

In the current study, we propose a novel all deep learn-
ing MVDR (ADL-MVDR) framework that can be adapted
for speech separation under different microphone configura-
tions, including multi-channel (single-frame), multi-frame (i.e.,
when only one channel is available to the beamforming mod-
ule), and multi-channel multi-frame (MCMF) scenarios. This
study extends our preliminary work on the ADL-MVDR beam-
former [49], which has proven to work well on multi-channel
(MC) speech separation tasks. The ADL-MVDR beamformer
incorporates a front-end complex filter estimator (i.e., a Conv-
TasNet variant based on our prior work [24], [50]) that consists of
dilated 1-D convolution blocks for speech and noise component

estimation and another ADL-MVDR module for frame-level
MVDR beamforming weights estimation. In contrast to con-
ventional per T-F bin mask-based approaches, complex ratio
filtering (denoted as cRF) [51] is used for more accurate es-
timates of the speech and noise components, while also ad-
dressing issues with handling phase. Earlier approaches have
verified the idea of applying NNs for matrix inverse [52]–[55]
and principal component analysis (PCA) [54], [56]. The pro-
posed ADL-MVDR module deploys two recurrent neural net-
works (RNNs) to replace the matrix operations (i.e., matrix
inverse and principal eigenvector extraction) performed on the
noise and speech covariance matrices, respectively. Leveraging
on the temporal properties of RNNs, the statistical variables
(i.e., inverse of noise covariance matrix and steering vector) are
estimated adaptively at the frame-level, enabling the derivation
of time-varying beamforming weights, which is more suitable
for diminishing the non-stationary noise at each frame. The
system also uses visual information (described in our prior
work [24], [50]) to extract the direction of arrival (DOA) of
the target speaker. Results from our prior study [49] indicate
that for MC speech separation tasks, the ADL-MVDR system
can greatly suppress the residual noise while also ensuring that
fewer distortions are introduced into the separated speech sig-
nal when compared to conventional neural mask-based MVDR
approaches.

The major contributions of this work consist of the follow-
ing. Firstly, we verify the idea of applying the ADL-MVDR
framework to MF speech separation tasks, when only one
channel of the signal is available to the beamforming module,
to further evaluate generalization. Secondly, we further adapt
the ADL-MVDR framework to an MCMF speech separation
task for spatio-temporal speech separation, which has not been
previously done, to determine if additional MF information leads
to further improvements. Thirdly, we examine and quantify
the influence of the cRF and MF sizes on the performance of
different ADL-MVDR systems.

The rest of this paper is organized as follows. Section II
describes the signal models for conventional neural mask-based
MC and MF-MVDR systems. The proposed ADL-MVDR sys-
tem is revealed in Section III. The experimental setup is given
in Section IV. We present and discuss the results in Section V.
Finally, we conclude our work in Section VI.

II. CONVENTIONAL NEURAL MASK-BASED MVDR FILTER

In this section, we discuss the signal models of conventional
neural mask-based MVDR filters under two different conditions,
i.e., MC and MF-MVDR speech separation.

A. Conventional Neural Mask-Based Multi-Channel MVDR

In the MC speech separation scenario, consider a time-domain
noisy speech signal y = [y(0), y(1), . . ., y(M−1)]T recorded by
an M -channel microphone array, where y(i) is the signal
recorded from the i-th channel. LetY(t, f),X(t, f) andN(t, f)
denote the M -dimensional T-F domain MC noisy-reverberant
speech, reverberant speech and noise signals, respectively. We
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have

Y(t, f) = X(t, f) +N(t, f), (1)

where (t, f) represents the corresponding frame and frequency
indices. Note that we use reverberant speech as the learning
target as we focus on separation only in this study. In the time-
domain, we have x(n) = g(n) ∗ s(n), where x(n) and s(n) are
the time-domain MC reverberant and anechoic speech signals,
n is the time index, g(n) represents the room impulse response
and ‘∗’ denotes linear convolution.

The estimated single-channel reverberant speech, X̂(0)(t, f),
can be obtained with the MC-MVDR filter as

X̂(0)(t, f) = hH
MC-MVDR(f)Y(t, f), (2)

wherehMC-MVDR(f) ∈ CM denotes the MC-MVDR beamform-
ing weights, and H is the Hermitian operator. The objective
of MC-MVDR filtering is to minimize the power of the noise
without introducing distortions into the target speech signal. This
can be formulated as

hMC-MVDR = argminh
h

HΦNNh s.t. hHv = 1, (3)

where v(f) ∈ CM stands for the target speech steering vector,
which can be estimated as the principal eigenvector of speech co-
variance matrix (i.e., v(f) = P{ΦXX}) [32], [57], [58]. ΦNN

represents the noise covariance matrix. The MVDR solution
based on the steering vector is [59], [60]

hMC-MVDR(f) =
Φ−1

NN(f)v(f)

vH(f)Φ−1
NN(f)v(f)

. (4)

In practice, many studies adopt the other MVDR solution that
is based on the reference channel [23], [42], [61]

hMC-MVDR(f) =
Φ−1

NN(f)ΦXX(f)

Trace(Φ−1
NN(f)ΦXX(f))

u, (5)

where u is the one-hot vector that selects the reference mi-
crophone channel. Note that the matrix inverse involved in the
MVDR solution is sometimes not numerically stable during joint
training with NNs. For instance, the estimated noise covariance
matrix could be singular, which will cause numerical instability
when computing the matrix inverse [62]–[64], where diagonal
loading is often used to alleviate this issue [23], [40], [64], [65].

In a typical neural mask-based MVDR system, the covariance
matrices are estimated chunk-wisely with T-F masks [9], [23],
[41], [57], [66]. A system that uses a real-valued T-F mask
(RM) (e.g., with an ideal binary mask (IBM), ideal ratio mask
(IRM),...) performs covariance matrix estimation as follows

Φ̂XX(f) =

∑T
t=1 RM

2
X(t, f)Y(t, f)YH(t, f)

∑T
t=1 RM

2
X(t, f)

, (6)

where RMX stands for the RM for estimating the speech com-
ponent and T is the total number of frames. The power mask is
used for normalization. The noise covariance matrix Φ̂NN can
be computed in a similar manner. Nevertheless, we want to point
out that the chunk-wise beamforming cannot fully eliminate
residual noise on each frame and therefore the relatively high
levels of residual noise becomes a hand-in-hand problem for
conventional neural mask-based MC-MVDR systems.

B. Conventional Multi-Frame MVDR

The MF-MVDR filter can be viewed as a special extension
of the MC-MVDR beamformer when only one channel of the
signal is available. In this case, the spatial information is lost and
therefore, the MF-MVDR filter tries to explore the interframe
correlations instead of performing spatial beamforming. Many
MF-MVDR systems have been proposed recently [36], [41],
[69]. Analogous to the MC-MVDR speech separation scenario,
the process of obtaining the MF-MVDR enhanced speech can
be described as

X̂(0)(t, f) = hH
MF-MVDR(t, f)Y

(0)
(t, f), (7)

where hMF-MVDR(t, f) ∈ CL and Y
(0)

represent the L-
dimensional MF-MVDR filter coefficients and L consecutive
STFT frames of the single-channel noisy speech signal [23],
[36], [69], respectively,

hMF-MVDR(t, f) = [h0(t, f), h1(t, f), . . .,hL−1(t, f)]
T ,

Y
(0)

(t, f) = [Y(0)(t, f),Y(0)(t− 1, f), . . .,

Y(0)(t− L+ 1, f)]T , (8)

where hl(t, f) represents the l-th filter coefficient andY(0)(t, f)
is the single-channel noisy speech STFT. This is similar to MC
beamforming methods by viewing different frames as micro-
phone inputs of different channels. Note that Eq. (8) can be
extended to use information from future frames, which benefits
speech processing. The MF speech and noise can be constructed
by concatenating the delayed (or shifted for future frames) ver-
sion of estimated speech or noise components following similar
steps in Eq. (8). The objective of the MF-MVDR filter is also to
minimize the power of the interfering sources while preserving
the components from the target speech, which can be computed
as

hMF-MVDR = argminh
h

H
ΦMF

VVh s.t. h
H
γx = 1, (9)

where ΦMF
VV(t, f) ∈ CL×L denotes the covariance matrix of

the MF undesired signal component [36], [37], [41] which
consists of the noise and the uncorrelated speech components.
γx(t, f) ∈ CL is the speech interframe correlation (IFC) vector
that describes the correlation between the previous and current
frames. According to [41], [69], the speech IFC vector γx can
be formulated as

γx(t, f) =
ΦMF

XX(t, f)e

E[|X(0)(t, f)|2] , (10)

where ΦMF
XX stands for the covariance matrix of the MF speech

and X(0) represents the single-channel speech. e is a vector
selecting the first column of the speech covariance matrix and
E[·] denotes mathematical expectation.

Solving Eq. (9), the MF-MVDR filter vector can be obtained
as [36], [41], [69]

hMF-MVDR(t, f) =
ΦMF

VV
−1
(t, f)γx(t, f)

γH
x (t, f)Φ

MF
VV

−1
(t, f)γx(t, f)

. (11)

Note that in [41],ΦMF
VV was replaced by the MF noise covariance

matrix ΦMF
NN under the assumption that the uncorrelated speech
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Fig. 1. Network architecture of our proposed ADL-MVDR framework. It consists of a complex filter estimator (i.e., highlighted in blue dashed box) based on
temporal convolution network (TCN) blocks for components estimation (depending on the case), and an ADL-MVDR filter (i.e., highlighted in red dashed box) that
consists of two GRU-Nets for frame-wise MVDR coefficients estimation. ⊗ and � denote the operations expressed in Eq. (15) and (19), (22) or (24), respectively,
depending on the situation.

component is negligible, which imposes an upper bound on the
system’s performance.

III. PROPOSED ADL-MVDR BEAMFORMER

As mentioned in previous sections, the covariance matrices
for most of the conventional neural mask-based MC-MVDR sys-
tems are computed at the chunk-level that discards the temporal
information. This results in relatively high levels of residual
noise in the separated speech. Additionally, the matrix inverse
involved in conventional neural mask-based MVDR systems
is sometimes not numerically stable when jointly trained with
NNs [64]. In some classical MVDR approaches, the derivations
of the steering or IFC vectors and covariance matrices are based
on recursive methods which requires heuristic updating factors
between consecutive frames [41], [43], [70]. However, these
factors are usually hard to determine and could easily influence
the accuracy of the estimated terms.

In this study, we propose a novel idea of ADL-MVDR that
can be applied to many different configurations, including MC
beamforming, MF filtering and MCMF beamforming (note that
a separate system needs to be trained for each microphone
setup). The key idea of our proposed ADL-MVDR frame-
work is about using two separate gated recurrent unit (GRU)
based networks (denoted as GRU-Nets) to replace the matrix
inverse and principal eigenvector extraction processes involved
in MVDR solution. Leveraging on the temporal properties of
RNNs, the GRU-Nets can better explore and utilize the temporal
information from previous frames without any needs of heuristic
updating factors. Estimating MVDR coefficients via GRU-Nets
also bypasses the numerical instability issue caused by the ma-
trix inverse, whereas conventional methods often use diagonal
loading and gradient clipping to address this issue [23], [64].
Note that previous approaches that adopt NNs to directly learn
the beamforming filtering weights [71], [72] are not successful
since noise information is not explicitly considered, whereas
our proposed ADL-MVDR beamformer explicitly utilizes the
cross-channel information from both estimated speech and noise
covariance matrices.

A. System Overview

The general framework of our proposed ADL-MVDR beam-
former is depicted in Fig. 1. The system consists of two parts, a

Fig. 2. Illustration of one TCN block (left) that consists of 8 dilated 1-D
convolution blocks (right). Each dilated 1-D convolution block consists of 1×1
(i.e., pointwise) convolution layers and a depth-wise separable convolution layer
(D convolution) [67]. PReLU [68] activation and normalization are applied
between the convolution layers. Skip connection is also used.

Fig. 3. Detailed network architecture of the ADL-MVDR module. The real
and imaginary parts of the covariance matrices are concatenated before fed into
the GRU-Nets. The estimated MVDR coefficients are reshaped back to their
original forms before computing the frame-level MVDR weights.

complex filter estimator that is based on our previously proposed
multi-modal MC speech separation platform [24], [50] (i.e., a
Conv-TasNet [22] variant) for covariance matrices estimation,
followed by another ADL-MVDR module (depicted in Fig. 3)
for frame-level MVDR weights derivation.

As described in our previous works [24], [50], inside the
complex filter estimator, the interaural phase difference (IPD)
and log-power spectra (LPS) features are extracted from the
15-channel noisy speech, where the IPD between the p-th pair
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Fig. 4. Schematic diagrams for the 15-channel linear microphone array and
the DOA estimation process with a wide view camera.

of microphone channels (e.g., m1 and m2) is

IPD(p)(t, f) = ∠Y(m1)(t, f)− ∠Y(m2)(t, f), (12)

where ∠ extracts the phase angle. We use the IPD computed
from five pairs of channels, i.e., (0,14), (1,13), (2,11), (4,11),
and (6,8), corresponding to five different distances between
microphones [24], [50]. A directional feature (DF) [73] is also
used in our experiment, which is defined as the cosine distance
between the steering vector and IPD:

DF(t, f) =
P∑

p=1

〈eTPD(p)(θt,f), eIPD(p)(t,f)〉,

TPD(p)(θt, f) = 2πfΔp cos θt/(fsc), (13)

where 〈〉 denotes cosine distance and vector e(·) = [ cos(·)sin(·) ].

TPD(p)(θt, f) is the target-dependent phase difference that de-
scribes the phase delay of a plane wave (with frequency f ), at
the p-th pair of microphones (total number of P pairs), with
target direction of θt, Δp is the distance between the p-th
pair of microphones, fs is the sampling frequency and c is
the sound velocity. The target DOA (i.e., θt) can be estimated
using a wide-view camera by locating the target speaker’s face.
Once the DF is obtained, it is further merged with the IPD
and LPS features by concatenating along the feature dimension
to form the input vector (1799 feature size) to the separation
network [24], [50]. An illustration of the 15-channel microphone
array that is calibrated with a 180◦ camera is depicted in Fig. 4,
where the microphone array is a linear array and is symmetric to
the center microphone (i.e., the 7th microphone in Fig. 4). The
DOA is roughly estimated with the target source location D on
the image with width W that is captured by the camera, where
DOA = D

W × 180◦.
In the front-end complex filter estimator, the audio encod-

ing network first reduces the feature dimension of the input
vector using a 1-D convolution layer with 256 1×1 kernels
(i.e., pointwise convolution) [24], followed by a stack of two
successive TCN blocks that consists of dilated 1-D convolution
layers with dilation rates exponentially increased from 20 to 27.
The details of TCN are illustrated in Fig. 2. Within each dilated
1-D convolution block, the number of output channels is set to
512 for the first 1×1 convolution layer, the depth-wise separable
convolution layer has a kernel size of 3 with 512 output channels,
followed by another 1×1 convolution layer with 256 output

Fig. 5. Schematic diagrams for complex ratio masking and complex ratio
filtering. The cRM is a one-to-one mapping, whereas the cRF is a many-to-one
mapping. In this example, the cRF has a size of 3×3, where each T-F bin is
estimated using nine T-F bins in its neighboring filter range. The center mask is
marked with a red fill.

channels. After audio encoding network, two separate filter
estimator networks are used to estimate the speech and noise
(or undesired signal) components. Each filter estimator network
consists of two successive TCN blocks (with dilation rates from
20 to 27) followed by another 1×1 convolution layer, where the
number of output channels for the last 1×1 convolution layer
depends on the estimation target (i.e., cRM or cRF).

B. Complex Ratio Filtering

Our recent work [23] suggests that the complex ratio mask
(denoted as cRM) can lead to better system performance, the
procedure of using cRM to derive the covariance matrix is
described below as

X̂cRM(t, f) = (cRMr + jcRMi) · (Yr + jYi)

= cRMX(t, f) ·Y(t, f),

Φ̂XX(f) =

∑T
t=1 X̂cRM(t, f)X̂H

cRM(t, f)
∑T

t=1 cRM
H
X(t, f)cRMX(t, f)

, (14)

where X̂cRM(t, f) represents the estimated MC speech compo-
nent via the complex speech mask cRMX. r and i denote the real
and imaginary parts, respectively. ‘·’ is the complex multiplier
and j is the complex number. The power of the complex mask
is used for normalization.

In this study, different from prior neural mask-based MVDR
approaches that use T-F masks (e.g., ideal ratio mask (IRM),
cRM, etc.) to estimate the speech and noise/undesired signal
components, we adopt the cRF [51] method for estimation. As
depicted in Fig. 5, the cRF differs from the cRM that instead
of using one-to-one mapping, it utilizes the nearby T-F bins to
estimate each target T-F bin. The example shown in Fig. 5 can
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be formulated as

X̂cRF(t, f) =

J2∑

τ1=−J1

K2∑

τ2=−K1

cRF(t, f, τ1, τ2)

·Y(t+ τ1, f + τ2), (15)

where X̂cRF is the estimated MC speech component using the
cRF method, the cRF has a size of (J2 + J1 + 1)× (K2 +
K1 + 1) for each T-F pixel in the estimated speech. J1, J2
and K1,K2 represent the number of previous/lower and fu-
ture/higher frames and frequency bins used for filtering, respec-
tively. The noise or the undesired signal components can be
obtained in a similar manner. Different from [51], where the
authors directly apply cRF for speech separation, we adopt cRF
to estimate the speech and noise covariance matrices which are
further used as inputs to the ADL-MVDR module. The cRF
also plays an important role in the success of our ADL-MVDR
beamformer, which will be illustrated afterwards in the ablation
study.

C. Multi-Channel ADL-MVDR

An accurate estimate of the steering vector is very important
for an MC-MVDR system as it contains information about which
direction the signal should be preserved [74], [75]. Yet previous
approaches involving extracting the principal eigenvector on
the speech covariance matrix sometimes could introduce large
gradients during back propagation and gradient clipping is often
adopted [23], [35], [40]. A similar issue exists for the inversion
process of the estimated noise covariance matrix when it be-
comes singular during joint training [62]–[64], where diagonal
loading [65] is often used to stabilize the process [23], [40],
[64], [76]. In order to perform time-varying beamforming and
stabilize the joint training process, we deploy two GRU-Nets to
replace the principal eigenvector extraction and matrix inverse
involved in MVDR solution. Note that we concatenate the real
and imaginary parts of the NN estimated time-varying covari-
ance matrices (i.e., Φ̃XX and Φ̃NN) before feeding them into
the GRU-Nets, as shown in Fig. 3.

v̂(t, f) = GRU-Netv(Φ̃XX(t′, f)),

Φ̂−1
NN(t, f) = GRU-NetNN(Φ̃NN(t′, f)), (16)

where 0 ≤ t′ ≤ t. Leveraging on the temporal properties of
RNNs, the frame-wise covariance matrices are fed into the GRU-
Nets for MVDR coefficients estimation. The hidden internal
states of the GRU-Nets can help capture the previous temporal
information in the estimated MVDR coefficients (i.e., steering
vector and inverse of the noise covariance matrix). Without
using any arbitrary inter-frame updating factors, the GRU-Nets
can learn the temporal dependencies through the NN training
process. The input time-varying speech and noise covariance
matrices (note they are frame-wise matrices without taking
expectation over time) can be obtained from the cRF estimated

speech and noise components as

Φ̃XX(t, f) =
X̂cRF(t, f)X̂

H
cRF(t, f)∑T

t=1 cRM
H
X(t, f)cRMX(t, f)

,

Φ̃NN(t, f) =
N̂cRF(t, f)N̂

H
cRF(t, f)∑T

t=1 cRM
H
N(t, f)cRMN(t, f)

, (17)

where N̂cRF and cRMN denote the estimated MC noise compo-
nent using the cRF method and the center complex mask of the
noise cRF (as depicted in Fig. 5) that is used for normalization,
respectively. The same notation also applies to cRMX. Different
from Eq. (14), we do not sum over the temporal dimension to
preserve the frame-level information as input to the GRU-Nets.

Based on these RNN-derived frame-wise MVDR coefficients,
i.e., Φ̂−1

NN(t, f) ∈ CM×M and v̂(t, f) ∈ CM , the MC MVDR
beamforming weights can be derived at frame-level as

ĥMC ADL-MVDR(t, f) =
Φ̂−1

NN(t, f)v̂(t, f)

v̂H(t, f)Φ̂−1
NN(t, f)v̂(t, f)

, (18)

where ĥMC ADL-MVDR(t, f) ∈ CM is the frame-wise MC ADL-
MVDR beamforming weights which are different from the
chunk-level weights derived in many conventional neural mask-
based MC-MVDR systems. Finally, the MC ADL-MVDR en-
hanced speech is obtained as

X̂
(0)
MC ADL-MVDR(t, f) = ĥH

MC ADL-MVDR(t, f)Y(t, f). (19)

D. Multi-Frame ADL-MVDR

We also introduce an MF setup to our ADL-MVDR frame-
work to simulate an extreme condition when only one channel
of the signal is available to the beamforming module. Note that
the MF ADL-MVDR system still uses the MC noisy speech as
inputs to estimate the cRFs, however, we only use one channel
of the signal as the inputs to the ADL-MVDR module. Without a
loss of generality, the front-end complex filter estimator could be
replaced by any other speech separation systems. The network
architecture of the MF ADL-MVDR system is analogous to the
MC ADL-MVDR, however, the purpose for each step in this case
is very different. Since the spatial information from the micro-
phone array is no longer available, the MF-MVDR explores the
correlation information between consecutive frames instead. An
accurate estimate on the speech IFC vector dominates the final
performance of the system.

Similar to the MC case, the time-varying MF speech covari-
ance matrix can be derived based on the estimated MF speech
component. They are defined as

X̂
(0)

cRF(t, f) = [X̂
(0)
cRF(t− L1 + 1, f), . . ., X̂

(0)
cRF(t, f),

. . ., X̂
(0)
cRF(t+ L2, f)]

T ,

Φ̃MF
XX(t, f) =

X̂
(0)

cRF(t, f)X̂
(0) H

cRF (t, f)
∑T

t=1 cRM
H
X(t, f)cRMX(t, f)

, (20)

where X̂
(0)

cRF is the estimated L-frame (L = L1 + L2, where
L1 and L2 indicate the number of previous and future frames)
single-channel speech component in T-F domain using the cRF
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method. X̂(0)
cRF is the estimated single-channel speech compo-

nent via cRF. The time-varying covariance matrix of the unde-
sired signal Φ̃MF

VV can be estimated in a similar way using cRF
method. Note that the undesired signal component is estimated
implicitly as the neural network can gradually learn the mapping
during training.

In the MF ADL-MVDR system, two GRU-Nets are imple-
mented to estimate the speech IFC vector and the inverse of
the undesired signal covariance matrix. The inputs to these two
networks are the time-varying MF speech and undesired signal
covariance matrices Φ̃MF(t, f) ∈ CL×L estimated via the cRF
method. This is formulated as

γ̂x(t, f) = GRU-Netγ(Φ̃
MF
XX(t′, f)),

Φ̂MF −1
VV (t, f) = GRU-NetVV(Φ̃MF

VV(t′, f)). (21)

Once these variables are obtained, the MF ADL-MVDR filter
weights ĥMF ADL-MVDR(t, f) ∈ CL are applied to the MF noisy

speech Y
(0)

(t, f) ∈ CL and the estimated speech are obtained
as

ĥMF ADL-MVDR(t, f) =
Φ̂MF −1

VV (t, f)γ̂x(t, f)

γ̂H
x (t, f)Φ̂

MF −1
VV (t, f)γ̂x(t, f)

,

X̂
(0)
MF ADL-MVDR(t, f) = ĥH

MF ADL-MVDR(t, f)Y
(0)

(t, f). (22)

E. Multi-Channel Multi-Frame ADL-MVDR

The MCMF ADL-MVDR combines both the MC and MF
information and uses them as inputs to the ADL-MVDR module.
Let X̂cRF denote the MC speech estimated using the cRF
method, then the MCMF speech and its time-varying covariance
matrix are obtained as

X̂cRF(t, f) = [X̂cRF(t− L1 + 1, f), . . ., X̂cRF(t, f)

, . . ., X̂cRF(t+ L2, f)]
T ,

Φ̃MCMF
XX (t, f) =

X̂cRF(t, f)X̂
H

cRF(t, f)∑T
t=1 cRM

H
X(t, f)cRMX(t, f)

. (23)

The MCMF estimated noise N̂cRF component and its time-
varying covariance matrix Φ̃MCMF

NN can be estimated using the
same method. Once the time-varying speech and noise co-
variance matrices Φ̃MCMF(t, f) ∈ CML×ML are obtained, we
can follow similar steps as the MC ADL-MVDR described in
Eq. (16) to estimate the MCMF steering vector v̂MCMF(t, f) ∈
CML and inverse of the MCMF noise covariance matrix.
After that, the MCMF ADL-MVDR beamforming weights
ĥMCMF ADL-MVDR(t, f) ∈ CML are derived in a similar manner
as described in Eq. (18). Finally, the MCMF ADL-MVDR
enhanced speech X̂

(0)
MCMF ADL-MVDR is obtained

X̂
(0)
MCMF ADL-MVDR(t, f) = ĥH

MCMF ADL-MVDR(t, f)Y(t, f),
(24)

where Y(t, f) ∈ CML is the MCMF noisy speech.

IV. EXPERIMENTAL SETUP

A. Speech Materials

We adopt a Mandarin audio-visual speech corpus (will be
released soon) collected from Youtube, which has been reported
in our prior works [23], [24], [50]. An SNR estimator together
with a face detector is used to filter out the low-quality ones [24],
[50]. A total number of 205,500 clean video segments from
around 1500 speakers are gathered. In contrast to our prior
works [24], [50], we do not use the lip movement features for our
system since we focus on beamforming in this study. There are
190,000 speech utterances in the training set, 15,000 utterances
in the validation set, and another 455 utterances in the testing
set. Speakers in the testing set are different from those in the
training set. The sampling rate is set to 16 kHz and the noise
source contains random clips from 255 noises recorded indoors.

To generate the multi-channel data, the microphone array and
all the sound sources are randomly placed in a simulated room,
the distance between any sound source and the microphone array
is between 0.5 m to 6 m [24]. The number of overlapped speakers
ranges from 1 to 3. We also consider a wide range of reverberant
conditions, where 2000 different rooms with 6000 room impulse
responses (RIRs) are simulated via the image method [77]. The
room size is randomly chosen from 4 m × 4 m × 3 m to 10 m
× 10 m × 6 m, with RT60 s ranging from 0.05 s to 0.7s. As
a result, the simulated multi-channel speech data has an SNR
range of 18 to 30 dB and the signal-to-interference ratio (SIR)
is between -6 to 6 dB.

B. Audio Features and Training Procedure

In order to extract the audio features, we use a 512-point STFT
together with a 32 ms Hann window and 16 ms step size. During
the training stage, the batch size and audio chunk size are set to 12
and 4 s, respectively. We adopt Adam optimizer with the initial
learning rate set to 1e−3, Pytorch 1.1.0 is used. All models are
trained with 60 epochs and early stopping is applied. The entire
system is trained to minimize the time-domain scale-invariant
source-to-noise ratio (Si-SNR) loss [78], which is the negative
of Si-SNR, i.e.,

LSi-SNR = −20log10

‖α · x‖
‖x̂− α · x‖ ,

α =
x̂Tx

xTx
, (25)

where α is a scaling factor that ensures the scaling invariance,
x̂ denotes the time-domain estimated speech. This time-domain
loss fits our end-to-end training paradigm. Note that we use the
reverberant clean speech as the learning target as we mainly
focus on separation in this study, the systems are not trained for
dereverberation in the present study.

C. System Setups

We adopt a Conv-TasNet variant [22] for complex filter
estimation, which contains bunch of dilated 1-D convolu-
tion networks together with a pair of fixed STFT/iSTFT en-
coder/decoder implemented with 1-D convolution layers [24],
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TABLE I
EVALUATION RESULTS FOR OUR PROPOSED ADL-MVDR SYSTEMS. THE PESQ SCORES ARE PRESENTED IN DETAILED CONDITIONS INCLUDING ANGLE BETWEEN

THE CLOSEST INTERFERING SOURCE AND TOTAL NUMBER OF SPEAKERS. THE AVERAGE SCORES OF SI-SNR, SDR AND STOI ARE GIVEN FOR BREVITY. THE ASR
ACCURACY IS MEASURED WITH THE WER AND THE BEST SCORES ARE HIGHLIGHTED IN BOLD FONTS

[50]. Details on the audio encoding network is introduced in
Section III-A. In this study, we focus on the ADL-MVDR frame-
work which can be adapted for MC, MF and MCMF-MVDR
filtering. Three setups corresponding to these three scenarios
are described below.

For the MC ADL-MVDR system, both GRU-Nets consist
of two layers of GRU and another fully connected layer. The
GRU-NetNN uses 500 units for both GRU layers and 450 units
(i.e., # of channel × # of channel × real and imaginary parts
= 15×15×2) for the fully connected layer. The GRU-Netv
contains 500 and 250 units for each GRU layer, respectively,
followed by a fully connected layer with 30 units (i.e., 15×2).
Tanh activation function is used for all GRU layers and linear
activation function is used for the fully connected layers. The
cRF size is empirically set to 3×3 (i.e., a T-F bin with its
surrounding eight T-F bins as depicted in Fig. 5) where it
can utilize temporal information from one previous frame to
one future frame and nearby frequency information from one
frequency bin below to one frequency bin above. Note that the
number of the output channels of the final 1×1 convolution layer
in the filter estimator networks could be changed accordingly
for different configurations of cRF sizes. For example, we set
the number of output channels to 257×9 for a 3 × 3 cRF.

In terms of the MF ADL-MVDR system, the GRU-Nets
feature the same structure to the MC setup, but with different
hidden sizes. We use an MF size of five, i.e., from two previous
frames to two future frames. The size of the cRF is 3×3, identical
to the MC setup. Unit size of all GRU layers is set to 128. The
fully connected layer contains 10 units for GRU-Netγ and 50
units for GRU-NetVV.

To investigate the influence of incorporating additional MF
information on top of the MC spatial information, a 9-channel
(i.e., mics: 0, 2, 3, 5, 7, 9, 11, 12, 14) 3-frame (i.e., from
one previous frame to one future frame) MCMF ADL-MVDR
system is included. Here the GRU-NetNN consists of two
GRU layer with 500 units each, followed by another 1458-unit
fully connected layer. The GRU-Netv contains two GRU
layers with 500 and 250 units, respectively, with another fully
connected layer of 54 units. The cRF size is also set to 3× 3.

Meanwhile, we investigate several microphone and MF se-
tups in the ablation study for MCMF ADL-MVDR systems,

TABLE II
EVALUATION RESULTS FOR THE MCMF ADL-MVDR SYSTEMS AND MC

ADL-MVDR SYSTEMS

including when only three (i.e., mics: 0, 7, 14), seven (i.e., mics:
0, 3, 5, 7, 9, 11, 14), nine (identical to the one mentioned above)
or all 15 channels are available to the ADL-MVDR module.
The cRF sizes are all set to 3× 3, the MF sizes are set to three
(i.e., from one previous frame to one future frame) and two
(i.e., one previous frame to current frame) for different MCMF
ADL-MVDR systems as presented in Table II. We also include
their corresponding MC ADL-MVDR systems (i.e., without
additional MF information) with the same selected microphone
channels for comparison approaches.

In other ablation studies, we examine the influence of the
cRF size on the performance of MC/MF ADL-MVDR systems.
The effects of different MF sizes are also investigated for MF
ADL-MVDR systems. The statistics on model size, speed and
memory usage are further provided. These results are reported
in the following section. Note that the current configurations of
ADL-MVDR systems are not specifically designed for online
processing, although the audio encoding network and the ADL-
MVDR beamformer could be configured to a causal system for
online processing.

D. Evaluation Metrics

A set of objective evaluation metrics are used to evaluate the
systems’ performance from different perspectives. These met-
rics include PESQ [79], source-to-distortion ratio (SDR) [80]
for speech quality assessment and STOI for intelligibility esti-
mation [81]. The Si-SNR score is also included as it has been
utilized for many recent speech separation systems [22], [23],
[82]. Moreover, we use a Tencent commercial speech recogni-
tion API [83] (based on deep feed-forward sequential memory
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networks [84]) to measure the ASR accuracy. The transcript of
the speech is manually labelled by human annotators.

V. RESULTS AND ANALYSIS

The general experimental results are provided in Table I,
where we compare the performance of our proposed ADL-
MVDR systems in MF, MC and MCMF conditions with its
peers. Demos can be found on our website1. The performance
of purely NN systems (i.e., the audio encoding network de-
scribed in Section III-A, denoted as NN with cRM/cRF) are also
included as baselines. We further include conventional neural
mask-based MC-MVDR systems [40] and multi-tap MVDR
systems [23] for comparison approaches (denoted as MVDR
with cRM/cRF and multi-tap MVDR with cRM/cRF), they
incorporate the same front-end network structure for mask/filter
estimation as the ADL-MVDR systems, followed by conven-
tional segment-level MVDR beamforming [23], [40]. Further-
more, we implement another MVDR systems with recursive
updating rules for mini-block covariance matrices as described
in [32], [45] (denoted as MVDR with cRF - recursive), where
the mini-block size is set to 30 frames with hop size of 10
frames. For fair comparison, the same front-end complex filter
estimator was used for speech and noise covariance matrices
estimation (with 3×3 cRF), the center mask is used to compute
the transition factors between successive mini-blocks. Note that
all of our implemented conventional neural mask-based MVDR
systems feature an end-to-end training scheme similar to [23],
[40], [61], [85], we further adopt diagonal loading [65] and
gradient clipping [23], [35] to alleviate the numerical instability
issue during joint training.

In Table I, the PESQ scores are further split up into detailed
conditions, including the angle between the closest interfering
source and total number of speakers. We present average results
of other metrics (i.e., Si-SNR, SDR and STOI) for brevity.

In the ablation studies, we report the performance with a set
of speech evaluation metrics (e.g., PESQ, Si-SNR) as well as
WER. The simulation results for different MCMF ADL-MVDR
systems are provided in Table II. Table III illustrates the results
on the effects of different cRF sizes on both MF and MC ADL-
MVDR systems, where the filtering region for each T-F pixel
is described by its relative boundaries of frames and frequency
bins. The effects of MF sizes on the performance of MF ADL-
MVDR systems are also revealed in Table IV. We want to point
out that there are infinitely many combinations of different cRF
sizes and MF sizes, we only investigate a limited number of them
which we consider to be representative. Lastly, Table V provides
statistics on the model size, running speed and memory usage
for a set of evaluated systems.

A. Overview Results on ADL-MVDR Systems

MC ADL-MVDR vs. Conventional neural mask-based MVDR:
we first investigate the performance of our proposed ADL-
MVDR framework in the MC scenario. As provided in the

1Samples of separated speech (including real-world scenarios) are available
at [Online]. Available: https://zzhang68.github.io/mcmf-adl-mvdr/

TABLE III
EFFECTS OF THE CRF SIZES ON THE PERFORMANCE OF PURELY NNS AND

MC/MF ADL-MVDR SYSTEMS. THE CRF SIZE IS REPRESENTED BY ITS

TIME (T.) AND FREQUENCY (F.) RANGES, WHERE 0, NEGATIVE AND POSITIVE

NUMBERS INDICATE THE CURRENT, PREVIOUS/LOWER AND FUTURE/HIGHER

TIME FRAME OR FREQUENCY BIN, RESPECTIVELY

TABLE IV
EFFECTS OF MF SIZES ON THE OBJECTIVE PERFORMANCE AND ASR

ACCURACY OF MF ADL-MVDR SYSTEMS. t REPRESENTS THE

CURRENT FRAME

third block of Table I, the MC ADL-MVDR system outper-
forms conventional neural mask-based MVDR systems by a
large margin across all objective scores. For instance, in terms
of the speech quality, our proposed MC ADL-MVDR system
outperforms the MVDR system with cRF for more than 17%
(i.e., PESQ: 3.42 vs. 2.92). Even under extreme conditions
when the interfering sources are very close to the target speaker
(i.e., angles less than 15◦), the MC ADL-MVDR system can
still restore the separated speech quality to a high level (i.e.,
PESQ: 3.04). In terms of the Si-SNR and SDR performance,
our proposed MC ADL-MVDR system also achieves nearly
31% and 23% improvements over the baseline MVDR system
with cRF (i.e., Si-SNR: 14.80 dB vs. 11.31 dB, SDR: 15.45 dB
vs. 12.58 dB). Similar patterns could be found for intelligibility
scores, where our proposed MC ADL-MVDR system achieves
around 5% better performance than recursive and chunk-level
MVDR systems (e.g., STOI: 93.3% vs. 89.0% and 88.9%),
respectively.

Compared to MVDR with cRF (i.e., chunk-level covariance
estimation), the MVDR with recursive updating rules results
in slightly worse performance (e.g., PESQ; 2.90 vs. 2.92, Si-
SNR: 10.12 dB vs. 11.31 dB), which might be caused by the
less accurate estimations of the covariance matrices within a
mini-block rather than using a full chunk of audio. Yet it still
achieves significant ASR gains compared to the purely NNs
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TABLE V
MODEL SIZE, MEMORY USAGE AND RUNNING SPEED INFORMATION OF SOME EVALUATED SYSTEMS

Fig. 6. Spectrograms of some evaluated systems in Table I, the nonlinear distortion and residual noise are highlighted by the dashed boxes.

(i.e., 16.74% vs. 22.49% and 22.07%). Note that the residual
noise in recursive MVDR and conventional neural mask-based
MVDR systems is still at relatively high level according to
their PESQ scores (i.e., average scores of 2.90 and 2.92, re-
spectively) when compared to the purely NN systems (e.g., NN
with cRF: 3.10). The multi-tap MVDR with cRF can better
remove the residual noise than MVDR with cRF, however, the
residual noise is still high compared to MC ADL-MVDR system.
Our proposed MC ADL-MVDR system also demonstrates its
superiority in ASR accuracy when compared to the multi-tap
MVDR system with cRF (i.e., 12.73% vs. 13.52%). Considering
that the current commercial ASR system is already very robust
to low-level of noises, the nearly 6% relative improvement in
WER is fairly good since our MC ADL-MVDR system can
greatly remove the residual noise while introducing even fewer
distortions to the target speech simultaneously. This can also be
observed in the example spectrograms provided in Fig. 6, the
conventional neural mask-based MVDR and multi-tap MVDR
systems come with high levels of residual noise, whereas our
MC ADL-MVDR system resolves this issue.

An example comparison of the beam patterns between con-
ventional neural mask-based MVDR system and our proposed
MC ADL-MVDR system is provided in Fig. 7. It represents
the case of a 2-speaker mixture, with the target and interfering
sources at directions of 63◦ and 131◦, respectively. It is obvious
that our proposed MC ADL-MVDR system can better capture
the target source information with a sharper main lobe at the
corresponding target direction. The frequency for these beam
pattern plots is set to 968 Hz. We pick the representative time
index for MC ADL-MVDR system in order to visualize its
time-varying beamforming weights.

Fig. 7. Beam pattern examples for conventional neural mask-based MVDR
system and our proposed MC ADL-MVDR system. RT60 = 0.31 s. Target
source at 63◦, interfering source at 131◦.

MF ADL-MVDR vs. NNs: The simulation results of the MF
ADL-MVDR system are provided in the second block of Table I.
By comparing the performance between MF ADL-MVDR sys-
tem and the purely NN system with cRF, we observe that the MF
ADL-MVDR system can lead to moderate improvements in all
objective metrics (i.e., PESQ: 3.14 vs. 3.10, Si-SNR: 12.60 dB
vs. 12.50 dB, SDR: 13.17 dB vs. 13.01 dB, and STOI: 89.5%
vs. 89.2%) when only one channel is available to the ADL-
MVDR module. We infer that the limited improvement here
compared to MC ADL-MVDR system is due to the loss of spatial
information. In the meantime, the proposed MF ADL-MVDR
system achieves huge improvement on ASR accuracy, which is
about 11.3% better in WER than NN with cRF (i.e., 19.57%
vs. 22.07%). This implies that our proposed MF ADL-MVDR
system can greatly reduce the nonlinear distortion introduced by
conventional purely NN systems. The purely NN systems (i.e.,
without MVDR) usually come with a relatively higher degree of
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nonlinear distortion on separated speech as they only focus on
noise reduction [86], [87]. As reflected in Fig. 6, the highlighted
spectral ‘black holes’ (i.e., zero or close to zero values on
spectrogram) is an example of the purely NN systems where
too much speech information is removed when suppressing
the noise, where modern ASR systems are known to be sensitive
to this type of distortion [86], [88]. Although not provided with
spatial information for the beamforming module, the proposed
MF ADL-MVDR system drastically outperforms the purely
NN systems in terms of ASR accuracy while achieving better
objective scores.

MCMF ADL-MVDR vs. MC ADL-MVDR: The results of
the best performing MCMF ADL-MVDR system (9-channel
3-frame) are showed in the last block of Table I. Compared to its
MC ADL-MVDR peer, we notice that the MCMF ADL-MVDR
system can further improve the objective scores (i.e., PESQ:
3.46 vs. 3.42, Si-SNR: 15.43 dB vs. 14.80 dB, SDR: 16.03 dB
vs. 15.45 dB, and STOI: 93.7% vs. 93.3%), suggesting that
MCMF ADL-MVDR system can even better remove the residual
noise and generate more intelligible speech signals than MC
ADL-MVDR systems. Slightly better performance is observed
in terms of ASR accuracy (i.e., 12.31% vs. 12.73%) when
compared to MC ADL-MVDR system. Results here suggest
that on top of the spatial information, incorporating additional
MF information is beneficial.

B. Ablation Study on MCMF ADL-MVDR Systems

As shown in Table II, we provide comparison results between
several MCMF ADL-MVDR systems and MC ADL-MVDR
systems (i.e., MF size = 1, current frame). Comparing the
performance between MCMF and MC ADL-MVDR systems,
we find that the inclusion of additional MF information can often
lead to improved performance in both objective scores as well as
the ASR accuracy. For example in 3-channel scenario, the PESQ,
Si-SNR and SDR scores are 3.40 vs. 3.29, 14.97 dB vs. 13.85 dB,
15.50 dB vs. 14.43 dB between MCMF and MC ADL-MVDR
systems. The WER for MCMF ADL-MVDR system is roughly
12% better than MC ADL-MVDR system (i.e., 12.74% vs.
14.46%) in 3-channel scenario.

Additionally, we observe that the gains from the additional
MF information for MCMF ADL-MVDR systems become
smaller as the number of available microphone channels in-
creases. For instance, in 3-channel scenario, the MCMF ADL-
MVDR system achieves relative improvement of 3.3% on PESQ
scores (i.e. 3.40 vs. 3.29) and 12% on ASR accuracy. Whereas
in 7-channel scenario, the relative improvement for MCMF
ADL-MVDR system is only around 2.7% on PESQ scores (i.e.,
3.43 vs. 3.34) and about 6% in terms of WER (i.e., 12.84% vs.
13.67%). This pattern suggests that the MF information becomes
less important when more spatial information is available. When
all 15 channels are provided, similar trend holds such that includ-
ing additional MF information can further improve the objective
scores (e.g., Si-SNR: 15.16 dB vs. 14.80 dB), while achieving
similarly high ASR accuracy (i.e., 12.89% vs. 12.73%).

We also want to point out that the feature space (i.e., size
of the covariance matrix) is increasing exponentially with the
number of microphone channels and the MF size. Therefore,

when the number of available microphone channels is small,
additional MF information (i.e., MCMF ADL-MVDR) may help
to enhance the performance. But this could be redundant when
more spatial information is available and a large feature size may
hinder the learning process of NNs.

C. Ablation Study on cRF Sizes

The results for different sizes of the cRF are presented in Ta-
ble III. The MF size is fixed at five (i.e., from two previous frames
to two future frames) for all MF ADL-MVDR systems. We find
that a 1× 1 cRF (i.e., a cRM) results in the worst performance
(e.g., WER: 22.49%) for purely NN systems when compared its
peers with larger cRF sizes. The NN with a 5× 5 cRF (i.e., the
3 rd purely NN system) leads to the best performance in WER
(i.e., 21.80%) and a 3× 3 cRF can achieve the best objective
scores (i.e., PESQ: 3.10, Si-SNR: 12.50 dB, SDR: 13.01 dB).
In general, we find that NNs with cRF of sizes 3× 3, 5× 5 and
7× 7 yield with similar performance in objective metrics and
ASR accuracy, while the cRM alone is not sufficient to achieve
the optimal performance. Larger cRF size could lead to slightly
better performance for purely NNs but there is also a trade-off
on the performance and run time efficiency of the system.

Similar patterns can be found in MC ADL-MVDR systems,
where the cRM alone (i.e., the 1st MC ADL-MVDR system)
is not leading to satisfactory performance (e.g., WER: 23.73%)
and size of the cRF could be even more important. By comparing
the systems with cRF of sizes 1× 1 and 1× 3 (i.e., the 1st and
2nd MC ADL-MVDR systems), we find that including nearby
frequency information would help improve the system’s perfor-
mance (e.g., WER: 23.73% vs. 17.87%). Whereas substantial
improvements (e.g., WER: 23.73% vs. 13.52%) can be achieved
by introducing the nearby temporal information to the cRF (i.e.,
the 1st and 4th MC ADL-MVDR systems), which suggests
that temporal information could be more important than nearby
frequency information for our proposed ADL-MVDR systems.
Meanwhile, we also find that including future frame information
in cRF could help improve the system’s performance. For exam-
ple, by comparing the MC ADL-MVDR systems with cRF that
contains information from two previous frames and the other
one with temporal information from one previous frame to one
future frame (i.e., the 3 rd and 5th MC ADL-MVDR systems),
slight improvements can be observed in both ASR accuracy (i.e.,
12.73% vs. 12.88%) and objective scores (i.e., PESQ: 3.42 vs.
3.40, Si-SNR: 14.80 dB vs. 14.51 dB and SDR: 15.45 dB vs.
15.09 dB).

Several cRF setups for MF ADL-MVDR systems are also
included and their results are generally consistent with those for
MC ADL-MVDR and purely NN systems. Specifically, a 1× 1
cRF (i.e., a cRM) does not perform well on MF ADL-MVDR
system either (i.e., lowest ASR accuracy and objective scores).
The inclusion of future frame information in cRF is crucial (e.g.,
comparing the 4th and 6th MF ADL-MVDR systems, WER:
21.11% vs. 20.40%) and that the nearby frequency informa-
tion could also improve the ASR performance slightly while
achieving similar objective scores (i.e., comparing the 6th and
7th MF ADL-MVDR systems, PESQ: 3.16 vs. 3.14, Si-SNR:
12.55 dB vs. 12.60 dB, SDR: 13.04 dB vs. 13.17 dB, and WER:
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20.40% vs. 19.57%). Increasing the cRF size from 3× 3 to
5× 5 (i.e., the last two MF ADL-MVDR systems) does not
improve the system’s performance and even result in slightly
poorer performance (except for PESQ scores), which indicates
that adopting a very large size cRF may not be necessary or
beneficial. In general, incorporating future T-F pixels to the cRF
can improve the systems performance but in a limited scale,
which could be caused by the non-causality of the complex filter
estimator that already uses some future information.

D. Ablation Study on MF Sizes

The cRF sizes for all MF ADL-MVDR systems presented
in Table IV are fixed at 3× 3 (i.e., ±1 nearby frames and
frequency bins) in order to investigate the influence of different
MF sizes. As shown in Table IV, we include six different setups
where the first two system setups represent the conditions when
only information from previous frames is available, and the
last four MF conditions further include information from future
frames. By comparing the first two MF ADL-MVDR system
in Table IV, we find that the inclusion of additional previous
frame (i.e., t-2) could help improve the objective scores (e.g.,
Si-SNR: 12.39 dB vs. 12.06 dB) while achieving similar WER
performance (i.e., 20.87% vs. 20.50%). Then, by comparing
the 1st and 3 rd MF ADL-MVDR systems (i.e., [t-1,t] and [t-
1,t+1]), we observe improvements in both the objective metrics
(e.g., PESQ: 3.02 vs. 3.09) and ASR accuracy (i.e., 20.50% vs.
20.27%), indicating that it is beneficial to include future frames
in the MF information. By increasing the MF range (e.g., the
3 rd and 4th MF ADL-MVDR systems in Table IV), further
improvements can be obtained (e.g., PESQ: 3.09 vs. 3.14 and
WER: 20.27% vs. 19.57%). We also find that further expanding
the MF size leads to even better performance (i.e., the 5th and
4th MF ADL-MVDR systems), where the system achieves better
objective scores (e.g., PESQ: 3.18 vs. 3.14) as well as improved
ASR accuracy (i.e., WER: 19.45% vs. 19.57%). However, when
the MF size continually increases from seven to nine (i.e.,
the last two setups in Table IV), no further improvements are
observed (e.g., PESQ: 3.17 vs. 3.18 and WER: 19.52% vs.
19.45%). Better performance can be achieved by increasing the
MF size, however, additional information from future frames did
not make significant contributions to the performance, which is
likely caused by the non-causality of the current front-end audio
encoding network.

E. Ablation Study on Model Statistics

Comparison results of the statistics in the systems’ training
and inference stages are reported in Table V. A single Nvidia
Tesla V100 GPU is used to measure the statistics, where we set
the batch size to 1 for evaluation in both training and inference
stage. The model size is first reported by the total number of
parameters in a model, memory usage information2 (training
and inference stages) and running speed (average running time
for processing 1 s of audio input) are also included. The systems’

2pytorch_memlab, [Online]. Available: https://github.com/Stonesjtu/
pytorch_memlab

performance on PESQ, Si-SNR and WER are provided for
comparison.

The purely NN with cRM has the smallest model size (i.e.,
16.40 M) since it does not come with a cRF estimator or RNN-
based beamforming module. The proposed MF ADL-MVDR
with cRF has slightly larger model size compared to NN with
cRF (i.e., 18.99 M vs. 17.46 M), but with similar inference mem-
ory (i.e., 78.7 MB vs. 70.3 MB), inference speed (20.1 ms vs.
15.7 ms) while better performance in speech quality (e.g., PESQ:
3.14 vs. 3.10) and ASR accuracy (i.e., 19.57% vs. 22.07%).

The proposed MC ADL-MVDR systems utilize additional
spatial information (i.e., microphone channels) in the GRU-Nets
that leads to increased model size compared to conventional
neural mask-based MVDR systems (e.g., 23.47 M vs. 18.32 M)
that is based on mathematical derivation. It obtains much better
performance compared to multi-tap MVDR system on the sepa-
rated speech quality (i.e., PESQ: 3.42 vs. 3.08, Si-SNR: 14.80 dB
vs. 12.66 dB) and WER (i.e., 12.73% vs. 13.52%), at the cost
of additional inference memory (i.e., 93.6 MB vs. 74.6 MB)
and inference time (i.e., 38.9 ms vs. 20.8 ms). When more
computation resources are available, the MCMF ADL-MVDR
system leads to the best performance (i.e., PESQ; 3.46, Si-SNR:
15.43 dB and WER 12.31%) with a model size of 27.01 M and
slightly increased inference memory and speed compared to MC
ADL-MVDR (i.e., 106.4 MB and 55.3 ms, respectively).

To investigate whether the performance gain is introduced
by increased number of network parameters, we further include
three models, (1) a lager purely NN with cRM, denoted with NN
with cRM (large), (2) a larger neural mask-based MVDR system
with cRF, denoted as MVDR with cRF (large), and (3) a compact
version of the MC ADL-MVDR system, denoted as MC ADL-
MVDR (compact). For the two enlarged models, we increase
the embedding dimension of the audio encoding block from 256
to 512, with everything else remained unchanged. Meanwhile,
for MC ADL-MVDR (compact), we reduce the hidden feature
space of the GRU-Nets (i.e., 250 and 50 for GRU-Netv , 250
for GRU-NetNN) and the cRF region (i.e., 3 × 1 cRF, only
using nearby temporal information).

As showed in Table V, simply increasing the network size does
not lead to major improvements on the systems’ performance.
For purely NNs with cRM, we have PESQ: 3.07 vs. 3.07,
Si-SNR: 12.26 dB vs. 12.23 dB and WER: 22.06% vs. 22.49%
between the large and original models. On the other hand, for
MVDR systems with cRF, increasing the model size leads to
0.02 and 0.07 dB increments in PESQ and Si-SNR, respec-
tively. Even with a reduced model size in MC ADL-MVDR
(compact), it still achieves relative 15%, 27% and 18% gains on
PESQ, Si-SNR, and WER compared to MVDR with cRF. For
fair comparison on model statistics, the proposed ADL-MVDR
systems should be compared with the recursive MVDR system,
as they estimate time-varying beamforming weights and can be
adapted for online processing with streaming input. Note that
conventional chunk-level MVDR systems cannot be directly
used for this purpose as they require a chunk of audio input to
derive the beamforming weights. When compared to MVDR
system with recursive updating rules, the MC ADL-MVDR
(compact) achieves faster inference speed (i.e., 27.0 ms vs.
31.3 ms), lower inference memory (i.e., 74.0 MB vs. 74.1 MB)
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while gaining substantial gains on speech quality (e.g., PESQ:
3.37 vs. 2.90) and ASR accuracy (13.01% vs. 16.74%).

Results here indicate that improvements are limited for purely
NNs and conventional neural mask-based MVDR systems with
increased model size, and our proposed MC ADL-MVDR sys-
tem still achieves substantial improvements than its peers with
the same model size. We infer that the additional inference
time and memory cost in our proposed ADL-MVDR systems
compared to purely NNs and conventional neural mask-based
MVDR systems are coming from the RNN-based networks in
the ADL-MVDR module. Moreover, when compared to conven-
tional neural mask-based MVDR system with recursive updat-
ing rules, the proposed ADL-MVDR systems consume similar
computing resources and time while delivering much better
performance on speech quality as well as the ASR accuracy.

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed an ADL-MVDR framework that
can be configured and applied for multi-channel, multi-frame,
and multi-channel multi-frame target speech separation tasks.
Our proposed ADL-MVDR systems have achieved the best per-
formance in terms of objective speech quality and intelligibility,
as well as ASR accuracy in both the multi-channel and multi-
frame scenarios among its peers. The multi-channel multi-frame
ADL-MVDR system can achieve even better performance by
fully exploring spatio-temporal cross correlations. Leveraging
on RNN-predicted filtering weights, the proposed ADL-MVDR
system also bypasses the numerical instability issue that oc-
curs in conventional neural mask-based MVDR systems during
joint training with neural networks. Additionally, the proposed
ADL-MVDR systems keep the residual noise at a minimum
level (reflected by highest objective scores) while introducing
hardly any nonlinear distortions (reflected by lowest WER).
However, one limitation of the current ADL-MVDR framework
is that it requires additional computation resources compared to
conventional neural mask-based MVDR approaches.

Future work of this study may include the following direc-
tions. First, we will evaluate this ADL-MVDR framework on
purely single-channel speech separation tasks. Second, the com-
plex ratio filter and multi-frame sizes are determined empirically
in this study, we will further explore approaches to control these
sizes adaptively. Third, we will adapt this ADL-MVDR frame-
work for joint separation and dereverberation tasks. Fourth, we
will explore a more generalized solution of neural beamformer
that is independent of microphone geometries. Lastly, we will
further explore on different network structures to provide a more
efficient model, for instance, we could try replacing the RNN-
based networks with feed-forward mechanisms for improved
efficiency.
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