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ABSTRACT

Perceptual evaluation constitutes a crucial aspect of various audio-
processing tasks. Full reference (FR) or similarity-based metrics
rely on high-quality reference recordings, to which lower-quality or
corrupted versions of the recording may be compared for evaluation.
In contrast, no-reference (NR) metrics evaluate a recording without
relying on a reference. Both the FR and NR approaches exhibit
advantages and drawbacks relative to each other. In this paper, we
present a novel framework called CORN that amalgamates these dual
approaches, concurrently training both FR and NR models together.
After training, the models can be applied independently. We evaluate
CORN by predicting several common objective metrics and across
two different architectures. The NR model trained using CORN has
access to a reference recording during training, and thus, as one
would expect, it consistently outperforms baseline NR models trained
independently. Perhaps even more remarkable is that the CORN FR
model also outperforms its baseline counterpart, even though it relies
on the same training data and the same model architecture. Thus, a
single training regime produces two independently useful models,
each outperforming independently trained models.

Index Terms— perceptual similarity, speech quality, deep metric,
full-reference metric, no-reference metric

1. INTRODUCTION

Audio quality assessment plays a significant role across a variety of
applications. Human judgment indicating how good or bad a clip
sounds serves as the “gold standard” method for such evaluations.
However, obtaining these judgments is resource-intensive due to the
associated time and cost factors. Mean Opinion Score (MOS) [1], a
widely used technique to gauge sound quality, demands substantial
resources, especially when repeated many times per recording, and
is therefore not scalable. Additionally, ensuring controlled listening
conditions further compounds the challenges of conducting MOS
evaluations. Consequently, there exists a compelling impetus to
explore alternative methodologies for quantifying sound quality.

Full-reference metrics, also known as intrusive or similarity
metrics (e.g., PESQ [2], POLQA [3], VISQOL [4], DPAM [5], CDPAM [6]),
require a clean reference to which a corrupted signal can be compared
as the basis for a quality rating. Researchers commonly rely on full-
reference metrics as a proxy for audio quality, because they were
introduced earlier – consider, e.g. SNR. One of the most impactful is
PESQ [2], introduced decades ago for telephony and still used today
across tasks. These methods have been shown to correlate well with
human perceptual judgments across tasks [5, 6]. However, a recent
study by Manocha et al. [7] highlighted several real-world situations
where established full-reference metrics (also known as similarity
metrics) face discrepancies when compared with human perception.
Specifically, their findings underscore that these metrics are unable to

effectively account for the diverse range of audio quality variations
in relation to “clean” recordings created under distinct environments.
Additionally, these metrics tend to accentuate differences that are
virtually imperceptible. This phenomenon arises due to the metrics’
training on pairs of recordings with identical speech content, resulting
in models that lack robustness in distinguishing between alterations
in content and variations in quality.

To ameliorate the reliance on clean reference, No-reference
methods rate quality on an absolute scale. Traditional methods like
ITU standard P.563 [8] and SRMRnorm [9] involve complicated
hand-crafted features. State of the art approaches rely on deep
learning [10–15]. Earlier learning methods trained models on
objective scores (e.g. PESQ) [11], while more recent approaches
discover a mapping between noisy audio signals and MOS in a
supervised learning fashion [10, 14–17]. However, as observed by
Manocha et al. [18], no-reference metrics learn an implicit distribution
of clean references, which suffers from both (a) high variance due
to factors like mood and past experience; and (b) substantial label
variance from human annotations. For example, in DNSMOS [10],
almost half of the recordings have ratings with standard deviation > 1.
Such label noise poses challenges in training robust models. Given
the pronounced variance within the training labels, the task of
training robust models is further complicated, leading to instability
and difficulties in achieving robust performance. Moreover, the
progress in refining no-reference models consistently lags behind
the advancements observed in full-reference model development,
contributing to the intricate landscape of audio quality assessment.

This paper proposes to learn a model of speech quality that com-
bines multiple tasks. We call it CORN for Co-trained Full-Reference
and No-reference audio metrics. CORN learns from different types of
tasks (FR and NR), and produces speech quality scores, together with
usable latent features and informative auxiliary outputs. Scores and
outputs are concurrently optimized in a multi-task setting by all the
different speech quality assessment tasks, with the idea that each type
of model outputs the same score irrespective of its handicap (with or
without reference).

As expected, the CORN NR model demonstrates superior per-
formance compared to an independently trained NR model. This
advantage arises from co-training, which provides access to the ref-
erence during training and ensures stable training with consistent
gradients. However, more remarkable is that the CORN FR model
surpasses its independently trained counterpart despite having the
same architecture and training data. This outcome suggests that
incorporating the NR loss during training assists the FR model in pre-
venting over-generalization from the observed training content, thus
enhancing its content-invariance. By flowing information through
a shared latent space bottleneck, the considered objectives learn to
cooperate and promote better and more robust representations while
discarding non-essential information (especially speech content infor-
mation) [19].
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Fig. 1: Proposed CORN training framework with (a) Full-reference
(FR, in green) and (b) No-Reference (NR, in red) models. Co-training
(a) and (b) together – the network architecture (c) of the base model B
is identical in each instance in the FR and NR models, and has shared
weights indicated by the dotted lines. In (a) and (b), task-specific
output heads Hf and Hn predict the FR and NR scores f ij and n i .
In FR the embedding e i of recording x i is identical to its counterpart
in NR; however only in FR it is concatenated with the embedding ej

of a reference recording rj before passing along to the output head
(Sections 3.1 and 3.2).

The key contributions of this paper are: (1) we propose a novel
framework for speech quality assessment that produces both FR and
NR models, each capable of assessing sound quality independently
of the other; (2) we propose methods to train neural networks within
this framework that are capable of predicting SI-SDR [20], SNR [21]
and PESQ [2] scores both with and without reference recordings; and
(3) we evaluate our framework through several objective evaluations
and show that the FR and NR models trained via CORN outperform
identical networks trained independently.

2. RELATED WORK

2.1. Full-reference metrics

Early models (PESQ [2], VISQOL [4]) mimicked human audio quality
perception, but had drawbacks: sensitivity to changes, narrow
focus (e.g., telephony), and non-differentiability for deep learning.
Researchers then trained differentiable models to imitate PESQ [22],
using GANs or gradients. Yet, these methods had optimization and
generalization issues. Instead of using conventional metrics (e.g.
PESQ) as a proxy, Manocha et al. [5] proposed DPAM that was trained
directly on a new dataset of human just-noticeable difference (JND)
judgments. DPAM correlates well with human judgment for small
perturbations, but requires a large set of annotated labels to generalize
well across unseen perturbations. Similarly, Serra et al.’s SESQA [23]
employed the JND dataset [5], adding objectives like PESQ. However,
the effects of adding different types of tasks remain unexplored.

2.2. No-reference metrics

Some of the earliest non-intrusive methods were based on complex
hand-crafted, rule-based systems [8, 24, 25]. Although they are
automatic and interpretable, they tend to be task-specific, and do
not generalize well. Moreover, these methods are non-differentiable
which limits their uses within deep learning frameworks. To
overcome the last concern, various neural network-based methods
have been developed [10–13, 26, 27]. However, the issue of task-

specificity and generalization remains. To overcome this, researchers
proposed to train models directly on a dataset of human judgment
scores [10, 16, 27, 28]. Reddy et al. [10] used a multi-stage self-
teaching model [29] to learn quality in the presence of noisy ratings.
Nonetheless, no-reference metrics lag behind full-reference metrics
in terms of correlation to human listening evaluations and adoption
in practical cases.

3. THE CORN FRAMEWORK

Our framework, CORN , is designed to assess the quality of a given
speech recording (xi), an optional reference recording (rj), and
output a measure of FR f ij and NR n i quality. We propose a
deep neural network for CORN and represent it by the function
CORN = N (x i , rj ). Given that we do not rely on any human-
labeled data, the crucial components of the framework include
designing tasks and objective functions that can help learn a quality
score. Fig 1 is a simple illustration of the framework. In our current
approach, CORN has the property of being monotonic (by design):
if N (xa , rj ) ≥ N (xb , rj ), then m(xa) ≤ m(xb), where m is any
quality assessment measure as defined in Section 3.2. We do not
enforce other metric properties [30,31] to allow flexibility in defining
tasks and objectives for training the neural networks. Moreover, even
human judgment of similarity may not constitute a metric [32], and
hence there is no pertinent reason which necessitates CORN to have
metric properties.

3.1. Framework Design and Model Architectures

CORN architecture (Fig 1) comprises two modules: a base model
block B, and task specific output heads Hf and Hn .

Base model block B: We adopt a pre-existing model architecture
inspired by SESQA [33], and illustrated in Figure 1(c). The model
comprises of four primary stages. Initially, we pass the input x
through a µ-law operation (without quantization) using a trainable
µ parameter, which is initialized to 4. Following this, we utilize two
pooling blocks, each comprising of convolution, batch normalization
(BN), rectified linear unit (ReLU) activation, and BlurPool. These
blocks employ 128 and 256 filters with a kernel width of 4,
downsampling the input by a factor of 4. Subsequently, we employ
three residual blocks. Each block consists of a BN preactivation
followed by three stages of ReLU, convolution, and BN. These
stages employ 512, 512, and 256 filters with kernel widths of 1,
3, and 1, respectively. A parametric linear averaging technique
is employed to create a residual connection, expressed as follows:
h0 = a0h + (1 − a0)F (h), where a0 is a vector of adjustable
parameters bounded within the range of 0 to 1, F denotes the residual
network, h signifies the input to the residual layers, and a represents
the weight associated with the output and the residual layer. The
components of a are initialized to 6, ensuring an initial emphasis on a
direct path from h to h0. After the residual blocks, temporal statistics
are computed on a per-time basis, involving channel-wise mean
and standard deviation calculations. This process consolidates all
temporal information into a singular vector of dimensions 2×256. The
vector undergoes BN before being fed into a multi-layer perceptron
(MLP) comprising two linear layers with BN, and a ReLU activation
in between. This MLP consists of 1024 and 200 units. We further
show that our results/hypothesis do not change if the architecture
changes (refer to Sec 5.1). The next blocks consist of output heads
for the training tasks and are described below, along with the training
loss functions.
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3.2. Training Tasks and Loss Functions

FR Block: As shown in Figure 1(a), this block is designed such that
the base network takes the two inputs (x i and rj ), concatenates their
embeddings (e i and ej ) and feeds it further onto two shallow linear
layers Hf that predict f ij , the Scale-Invariant Signal to Distortion
Ratio (SI-SDR) for the entire recording.

The goal of this task is to predict SI-SDR. Let ŝ = f ij be the
recording level SI-SDR predicted by this output head. We then use the
Smoothed-L1 loss between ŝ = f ij and the target SI-SDR s to train
the network:

LQ(s, ŝ) =

{
(ŝ − s)2/β , | ŝ − s | ≤ β

2| ŝ − s | − β , otherwise
(1)

NR Block: As shown in Figure 1(b), this block is designed such that
the base network takes a single input x i , passes it through the same
base model B to produce the same embedding e i as found by the
FR path. Next it feeds further onto two shallow linear layers Hn

that predict ni , the SI-SDR for the entire recording. Using ŝ = n i

(predicted SI-SDR) we apply the Smoothed-L1 loss between predicted
and target SI-SDR s to train the network, as in equation (1).

Objective Metrics: Since we do not have any perceptual labels,
CORN relies on a signal processing measure SI-SDR, to compare the
quality of the two inputs. We consider SI-SDR objective metric as
a proxy for human quality evaluation because it helps us train on
limitless amounts of unlabeled or programmatically generated data
and outputs quality scores that are consistent, unlike MOS. SI-SDR [20]
is a measure that was introduced to evaluate performance of speech-
processing algorithms. It is invariant to the scale of the processed
signal and can be used to quantify quality in diverse cases, including
additive background noises as well as other distortions. Additionally,
we also show that our framework is invariant to the target label we
use, so we show its performance on other objective metrics like SNR
and PESQ (refer to Sec 5.1).

SNR is measured as the ratio of the signal power to the noise
power and is primarily meant only for additive noises. Consider a
mixture signal x, x = r + δ ∈ RL where r is the clean signal and
δ is the noise signal, then

SNR = 10 log10

(
| |r | |2

| |r − x | |2

)
(2)

10log10() factor measures SNR in dB-scale, and a higher SNR
implies better signal quality. Yuan et al. [21] also showed that SNR
as a distance metric had better properties than conventional metrics
(like Euclidean distance).

PESQ [2], which stands for perceptual evaluation of speech
quality, is an impactful objective metric used by many researchers
to evaluate the sound quality of their model output with respect to a
given reference. It was introduced decades ago for telephony and still
used today for a wide variety of tasks including enhancement [34–37],
vocoders [38], and transmission codecs [39, 40].

3.3. Training procedure

We now describe our training procedure. We assume the availability
of a clean speech database Dclean. The training inputs xi and rj are
created by sampling a clean recording rj from Dclean. rj is corrupted
to produce x i . The degradations we use can be largely grouped
under two categories (a) additive noise degradations, and (b) speech
distortions based on signal manipulations - Clipping, Frequency

Masking, and Mu-law compression. For additive noise, we sample
noise recordings, δ i , from a noise database (Section 4.1) and add
them to rj at SI-SDR levels uniformly sampled from the range -40
dB to +40 dB. Once we have the degraded signal (x i), its clean-
reference counterpart (rj ), and their quality score fij and ni(=fij ),
we can train the network as described in previous sections.

3.4. Inference

Once the network is trained, we can predict the quality score of a
test input xi along with the option of an accompanying reference
input, rj. Within this framework, our Full-Reference (FR) branch
accepts two inputs, namely, xi and rj, and generates an output quality
score, fij. Likewise, our No-Reference (NR) branch is designed to
process a solitary input, xi, and produces an NR quality score, ni.
The selection between these branches hinges on whether our task
incorporates a reference, allowing us to determine the appropriate
branch for utilization.

4. EXPERIMENTAL SETUP

4.1. Datasets and training

For training (Dtrain), the clean set Dclean comes from the DAPS
dataset [41], and the noise set Dnoise comes from DNS Challenge
[42] dataset. Along with additive noise, clipping, and frequency
masking distortions are used during training. For robustness and
better generalization to realistic conditions, we also add reverberation
using room impulse responses from the DNS Challenge dataset.
For the test-set (Dtest), we use TIMIT [43] as the source for clean
speech, and ESC-50 [44] dataset for noise recordings. The test set
also includes Gaussian noise addition and Mu-law compression as
unseen degradations. The inputs to our model are 3-second waveform
excerpts. We use the Adam optimizer with a learning rate of 10−4

with a batch size of 64. We train the network for 1000 epochs.
Smoothed L1 parameter β=1 for all experiments.

4.2. Baselines

We undertake a comparative analysis involving our proposed method-
ology, CORN, in contrast to standalone models that were trained
without adopting a multi-task framework, encompassing individual
Full-Reference (FR) and No-Reference (NR) models. This endeavor
aims to ascertain the potential superiority of our amalgamated model,
CORN.

5. RESULTS

5.1. Performance across metrics and architectures

These aim to assess CORN as a proxy for subjective judgments by
humans. More specifically, we evaluate how well CORN correlates

Name SI-SDR SNR PESQ New B Arch.

FR NR FR NR FR NR FR NR

Indiv. 96.5 110.3 98.0 99.9 0.9 1.3 124.9 134.9
CORN 85.9 92.9 79.5 82.7 0.7 0.9 103.2 108.2

Table 1: Evaluations: Refer to Sec 5.1. Models include: CORN and
individual FR and NR prediction models. The numbers show SI-SDR
as a metric, unless specified otherwise. ↓ is better.
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with ground truth target objective measures. We first hold out a subset
of Dtrain and evaluate the performance of the models on that set. Next,
to show generalization to unseen conditions (room environments,
listeners, etc.), we also evaluate models across the unseen test dataset
Dtest. We evaluate various models based on the output from the model,
compared to the ground truth noise level using mean square error
(MSE) between noise level differences.

Results are displayed in Table 1. The proposed CORN framework
demonstrates superior performance compared to the individually
trained baseline models. When using CORN for training, the no-
reference (NR) model shows an improvement of around 16% over
the independently trained NR model, suggesting that co-training
stabilizes the NR model. Perhaps more remarkably, the full-
reference (FR) model trained with CORN also exhibits a sizeable
gain, surpassing the individually trained FR model by around 11%,
despite the fact that the independent and co-trained FR models share
the exact same architecture and training data. Thus, the co-training
approach enhances the quality of each of the respective NR and FR
models that were trained together.

Objectively, we also compare various metrics on (i) invariance to
base model architecture; and (ii) invariance to target objective.

Invariance to base model To demonstrate the generality of our pro-
posed framework, transcending reliance on any specific architectural
paradigm, we effectuate a substitution of the base model B with
an architecture introduced by Manocha et al. [18]. This alternative
model employs a composite of both magnitude and phase spectra as
input. Please refer to Table 1 for detailed insights. It becomes evident
from the outcomes illustrated in Table 1 that the performance of this
model aligns coherently with those derived from the model trained
using the base model architecture described in Sec 3.1.

Invariance to choice of target objective In order to establish the
universality of our proposed framework, devoid of any reliance on
specific target objectives, we enact a substitution of the initial SI-
SDR training objective with PESQ and SNR. For a fair comparison,
given that SNR is confined to linear degradations, such as background
noise, we adapt our approach to only introduce diverse background
noise types during training and evaluation. For comprehensive
insights, kindly refer to Table 1. The observations from the metrics
presented therein harmonize with outcomes originating from the SI-
SDR paradigm, underscoring its efficacy across various objectives. It
can be noted that conducting training using the PESQ metric results
in reduced error rates. This outcome may be attributed to the fact
that PESQ has a scale ranging from 1 to 5, whereas SNR and SI-SDR
exhibit a broader range spanning from -40 dB to +40 dB.

5.2. Evaluation of the embedding

Content invariance To assess the robustness of the system to content
variations, we generate a test dataset encompassing two distinct
groups: the first group comprises pairs of recordings characterized
by identical background noise but different speech content, while
the latter group comprises recordings featuring different noise and

Name Invar. to content Small signal shifts

FR NR FR NR

Indiv. 0.5 0.8 1.4 2.0
CORN 0.3 0.3 1.2 1.9

Table 2: Evaluations: Refer to Sec 5.2. Models include: CORN and
individual FR and NR prediction models. ↓ is better.

speech content. Embeddings e are extracted from the base model B,
and subsequently, the cosine similarity between recording pairs from
both groups is computed. A Gaussian distribution is then fitted to the
resultant samples drawn from these groups.

The calculation of the common region between these normalized
Gaussian distributions is performed to gauge the extent of their
overlap. A smaller common area is indicative of a more robust
model. In CORN it is noteworthy that the common area is observed to
be the lowest across both scenarios, namely with and without content
variations (as delineated in Table 2).

Moreover, it is worth highlighting that a diminishing common
area is associated with enhanced performance on the held-out dataset,
as presented in Table 1. This finding suggests that the challenge
of distinguishing between these two distribution groups may exert a
significant influence on the process of acquiring a robust audio quality
assessment metric.

Small shifts in signal To evaluate the robustness to small (impercep-
tible) signal shifts, we create a test dataset of pairs of recordings with
clean references and small noise-added signals. It is anticipated that
the FR outputs shall closely approximate the highest attainable scores
across a majority of the test instances. Conversely, in the context
of NR scores, minimal disparities between the two input signals are
sought, with the aim of these disparities approaching proximity to
zero. Refer to Table 2. Here, we show the difference between the
maximum score and the model FR outputs for the FR case and the
magnitude difference of the respective scores for the NR case. In all
cases, we see that our model has the lowest scores, showing that the
model is robust to small, imperceptible changes.

Quality based retrieval: Here, we consider the outputs after the
base model block as the quality embeddings, and use it for quality-
based retrievals. Similar to Manocha et al. [18], we first create a
test dataset of 1000 recordings at 10 discrete quality levels. We take
randomly selected queries and calculate the number of correct class
instances in the top K retrievals. We report the mean of this metric
over all queries (MPk ). CORN gets MPk=10 = 0.87, as compared to
MPk=10 = 0.75 for the FR model, and MPk=10 = 0.80 for the NR
model. This suggests that our approach better clusters quality-level
groups in this learned space.

6. CONCLUSIONS AND FUTURE WORK

This paper presents CORN – a novel approach that co-trains FR
and NR models. We find that incorporating the NR loss during
training assists the FR model in preventing over-generalization from
the observed training content, thus enhancing its content-invariance.
On the other hand, incorporating the FR loss during training assists
the NR model by providing stable gradients during training.

In the future, we would like to apply this framework to a broader
set of objectives and quality metrics. For example, we believe it
would be valuable to collect a large dataset of human subjective
ratings like MOS in a format suitable for training FR and NR models
with such data. Likewise, the framework could be extended to learn
from non-scalar data such as pairwise preference or triplet judgments.
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